Asymptotics of sequence A034691

(Václav Kotěšovec, published Sep 09 2014)

The generating function for the sequence A034691 in the OEIS is

$$
U(x)=\prod_{k=1}^{\infty} \frac{1}{\left(1-x^{k}\right)^{2^{k-1}}}
$$

Main result:

$$
a_{n} \sim e^{\sum_{k=2}^{\infty} \frac{1}{k\left(2^{k}-2\right)}} * \frac{e^{\sqrt{2 n}} 2^{n}}{\sqrt{2 \pi} e^{1 / 4} 2^{3 / 4} n^{3 / 4}}
$$

Proof:

We have Maclaurin series

$$
\begin{gathered}
\log (1-x)=-\sum_{k=1}^{\infty} \frac{x^{k}}{k} \\
\log (U(x))=\log \left(\prod_{j=1}^{\infty} \frac{1}{\left(1-x^{\mathrm{j}}\right)^{2^{j-1}}}\right)=-\sum_{j=1}^{\infty} 2^{j-1} * \log \left(1-x^{j}\right)=\sum_{j=1}^{\infty} 2^{j-1} \sum_{k=1}^{\infty} \frac{x^{j k}}{k}=\sum_{k=1}^{\infty} \frac{x^{k}}{k\left(1-2 x^{k}\right)}
\end{gathered}
$$

The saddle-point method is used, see [2], equation (12.9).

$$
a_{n} \sim \frac{U\left(r_{n}\right)}{\sqrt{2 \pi * b\left(r_{n}\right)} * r_{n}^{n}}
$$

The saddle-point equation is

$$
\begin{gathered}
r_{n} * \frac{U^{\prime}\left(r_{n}\right)}{U\left(r_{n}\right)}=n \\
x * \frac{U^{\prime}(x)}{U(x)}=x * \frac{d}{d x} \log (U(x))=x * \frac{d}{d x} \sum_{k=1}^{\infty} \frac{\mathrm{x}^{k}}{k\left(1-2 x^{k}\right)}=\sum_{k=1}^{\infty} \frac{x^{k}}{\left(1-2 x^{k}\right)^{2}} \\
\sum_{k=1}^{\infty} \frac{r_{n}^{k}}{\left(1-2 r_{n}^{k}\right)^{2}}=n
\end{gathered}
$$

An asymptotic solution is (set $k=1$)

$$
\begin{aligned}
& \text { Solve }\left[r /(1-2 r)^{\wedge} 2=n, r\right] \\
& \left\{\left\{r \rightarrow-\frac{-1-4 n+\sqrt{1+8 n}}{8 n}\right\},\left\{r \rightarrow \frac{1+4 n+\sqrt{1+8 n}}{8 n}\right\}\right\}
\end{aligned}
$$

The dominant root is

$$
r_{n} \sim \frac{1}{2}-\frac{\sqrt{8 n+1}}{8 n}+\frac{1}{8 n}
$$

Now we compute

$$
\frac{1}{r_{n}^{n}} \sim \frac{1}{\left(\frac{1}{2}-\frac{\sqrt{8 n+1}}{8 n}+\frac{1}{8 n}\right)^{n}} \sim 2^{n} e^{\sqrt{n / 2}}
$$

It is important to note that taking only two terms the asymptotic expansion $\frac{1}{2}-\frac{1}{2 \sqrt{n}}$ is insufficient, three terms are needed. An eventual term $n^{-3 / 2}$ can be ignored. We obtain:

```
Limit[1/(1/2-Sqrt[8n+1]/8/n+1/8/n)^n/(2^n*E^^(Sqrt[n/2])), n-> Infinity]
Limit[1/(1/2-Sqrt[8n+1]/8/n)^n/(2^n*E^(Sqrt[n/2])), n ( Infinity]
Limit[1/(1/2-Sqrt[8n+1]/8/n+1/8/n+c/n^(3/2))^n/(2^n*E^(Sqrt[n/2])),n->Infinity]
1
e}\mp@subsup{e}{}{1/4
1
```

$$
\begin{gathered}
b(x)=\frac{x U^{\prime}(x)}{U(x)}+\frac{x^{2} U^{\prime \prime}(x)}{U(x)}-\frac{x^{2} U^{\prime}(x)^{2}}{U(x)^{2}}=\frac{x U^{\prime}(x)}{U(x)}+x^{2}\left(\frac{d}{d x}\right)^{2} \log (U(x)) \\
b(x)=\frac{x U^{\prime}(x)}{U(x)}+x^{2}\left(\frac{d}{d x}\right)^{2} \sum_{k=1}^{\infty} \frac{x^{k}}{k\left(1-2 x^{k}\right)}=\frac{x U^{\prime}(x)}{U(x)}+\sum_{k=1}^{\infty} \frac{x^{k}\left(2(k+1) x^{k}+k-1\right)}{\left(1-2 x^{k}\right)^{3}} \\
b\left(r_{n}\right) \sim n+\sum_{k=1}^{\infty} \frac{r_{n}^{k}\left(2(k+1) r_{n}^{k}+k-1\right)}{\left(1-2 r_{n}^{k}\right)^{3}} \\
b\left(r_{n}\right) \sim n+\frac{4 r_{n}^{2}}{\left(1-2 r_{n}\right)^{3}}+\sum_{k=2}^{\infty} \frac{r_{n}^{k}\left(2(k+1) r_{n}^{k}+k-1\right)}{\left(1-2 r_{n}^{k}\right)^{3}}
\end{gathered}
$$

For $k>1$ the sum tends to a constant as n tends to infinity

$$
\begin{aligned}
& \text { Fullsimplify }[\\
& \text { Limit [r^k* } \left.2(k+1) r^{\wedge} k+k-1\right) /\left(1-2 r^{\wedge} k\right) \wedge 3 / . \\
& r \rightarrow(1 / 2-\operatorname{Sqrt}[8 n+1] / 8 / n+1 / 8 / n), n \rightarrow \text { Infinity }]] \\
& \frac{2^{k}\left(2^{k}(-1+k)+2(1+k)\right)}{\left(-2+2^{k}\right)^{3}} \\
& \begin{array}{l}
\mathrm{N}\left[\operatorname{Sum}\left[\frac{2^{\mathrm{k}}\left(2^{\mathrm{k}}(-1+\mathrm{k})+2(1+\mathrm{k})\right)}{\left(-2+2^{k}\right)^{3}},\{\mathrm{k}, 2, \text { Infinity }\}\right], 14\right] \\
6.5966596802914
\end{array} \\
& \sum_{k=2}^{\infty} \frac{r_{n}^{k}\left(2(k+1) r_{n}^{k}+k-1\right)}{\left(1-2 r_{n}^{k}\right)^{3}} \sim \sum_{k=2}^{\infty} \frac{2^{k}\left(2^{k}(k-1)+2(k+1)\right)}{\left(2^{k}-2\right)^{3}}=c=6.596659680291 \ldots
\end{aligned}
$$

If $k=1$ then we obtain

$$
\frac{4 r_{n}^{2}}{\left(1-2 r_{n}\right)^{3}} \sim n(\sqrt{8 n+1}-1)
$$

Together

$$
b\left(r_{n}\right) \sim n+n(\sqrt{8 n+1}-1)+c \sim(2 n)^{3 / 2}
$$

$$
U\left(r_{n}\right)=e^{\log \left(U\left(r_{n}\right)\right)}=e^{\sum_{k=1}^{\infty} \frac{r_{n}^{k}}{k\left(1-2 r_{n}^{k}\right)}}
$$

We have

$$
\sum_{k=1}^{\infty} \frac{r_{n}^{k}}{k\left(1-2 r_{n}^{k}\right)}=\frac{r_{n}}{\left(1-2 r_{n}\right)}+\sum_{k=2}^{\infty} \frac{r_{n}^{k}}{k\left(1-2 r_{n}^{k}\right)}
$$

Contribution of the first term is

```
FullSimplify[r^k/(1-2 r^k) /. {r->(1/2-Sqrt[8n+1]/8/n+1/8/n),k mil}]
\frac{1}{4}(-1+\sqrt{}{1+8n})
```

$$
\frac{r_{n}}{\left(1-2 r_{n}\right)} \sim \sqrt{n / 2}-1 / 4
$$

```
Simplify[
    Limit[r^k/(1-2 r^k)/k/.
        {r->(1/2-Sqrt[8n+1]/8/n+1/8/n)},n->Infinity]]
        \frac{1}{(-2+\mp@subsup{2}{}{k})k}
```

$$
\begin{gathered}
\frac{r_{n}^{k}}{k\left(1-2 r_{n}^{k}\right)} \sim \frac{1}{k\left(2^{k}-2\right)} \\
U\left(r_{n}\right)=e^{\sum_{k=1}^{\infty} \frac{r_{n}^{k}}{k\left(1-2 r_{n}^{k}\right)}} \sim e^{\sqrt{n / 2}-1 / 4+\sum_{k=2}^{\infty} \frac{1}{k\left(2^{k}-2\right)}}
\end{gathered}
$$

Constant A247003

$$
e^{\sum_{k=2}^{\infty} \frac{1}{k\left(2^{k}-2\right)}}=1.39764900508365028506507459852679115900781142944 \ldots
$$

The final asymptotic is

$$
a_{n} \sim \frac{U\left(r_{n}\right)}{\sqrt{2 \pi * b\left(r_{n}\right)} * r_{n}^{n}}=\frac{e^{\sqrt{n / 2}-1 / 4+\sum_{k=2}^{\infty} \frac{1}{k\left(2^{k}-2\right)}}}{\sqrt{2 \pi *(2 n)^{3 / 2}}} * 2^{n} e^{\sqrt{n / 2}}=e^{\sum_{k=2}^{\infty} \frac{1}{k\left(2^{k}-2\right)}} * \frac{e^{\sqrt{2 n}} 2^{n}}{\sqrt{2 \pi} e^{1 / 4} 2^{3 / 4} n^{3 / 4}}
$$

Note that the asymptotic formula in the article [1] (Theorem 3) is incorrect!

Numerical verification (for 20000 terms), ratio tends to 1 :

References:

[1] N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89
[2] A. M. Odlyzko, Asymptotic enumeration methods, pp. 1063-1229 of R. L. Graham et al., eds., Handbook of Combinatorics, 1995
Saddle point approximation

$$
\begin{equation*}
\left[z^{n}\right] f(z) \sim\left(2 \pi b\left(r_{0}\right)\right)^{-1 / 2} f\left(r_{0}\right) r_{0}^{-n} \text { as } n \rightarrow \infty \tag{12.9}
\end{equation*}
$$

where r_{0} is the saddle point (where $r^{-n} f(r)$ is minimized, so that $r_{0} f^{\prime}\left(r_{0}\right) / f\left(r_{0}\right)=n$) and

$$
\begin{equation*}
b(r)=r \frac{f^{\prime}(r)}{f(r)}+r^{2} \frac{f^{\prime \prime}(r)}{f(r)}-r^{2}\left(\frac{f^{\prime}(r)}{f(r)}\right)^{2}=r\left(r \frac{f^{\prime}(r)}{f(r)}\right)^{\prime} \tag{12.10}
\end{equation*}
$$

[3] OEIS - The On-Line Encyclopedia of Integer Sequences

This article was published on the website http://web.telecom.cz/vaclav.kotesovec/math.htm, 9.9.2014 and in the OEIS, Sep 092014

