Asymptotic of sequence A084611

(Václav Kotěšovec, published 26.7.2013)

In the OEIS (On-Line Encyclopedia of Integer Sequences) published Paul D. Hanna 13.9.2003 sequence A084611, $a_{n}=$ sum of absolute values of coefficients of $\left(1+x-x^{2}\right)^{n}$ and 12.7.2013 he conjectured asymptotic

$$
\lim _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n} \sim \sqrt{5}
$$

This article contains proof of this formula.
First several terms of this sequence is (in program Mathematica)
Table[Sum[Abs [Coefficient[Expand [(1+x-x^2) ^n], $x, k]$], $\{k, 0,2 * n\}],\{n, 0,20\}]$
$\{1,3,7,13,35,83,165,367,899,1957,3839,9771,22709,43213,102963,255061,525601,1098339,2798273,6202969,11746259\}$
Numerical results for first 500 terms are

Sqrt[5.]
2.23607

This polynomial $1+x-x^{2}$ has two real roots

$$
x_{1}=\frac{1}{2}(1+\sqrt{5}), \quad x_{2}=\frac{1}{2}(1-\sqrt{5})
$$

With help of binomial theorem and convolution of $\left(x-x_{1}\right)^{n} *\left(x-x_{2}\right)^{n}$ we obtain following result

$$
\left(\sum_{k=0}^{n}\binom{n}{k} *\left(-x_{1}\right)^{k} * x^{n-k}\right) *\left(\sum_{m=0}^{n}\binom{n}{m} *\left(-x_{2}\right)^{m} * x^{n-m}\right)=\sum_{p=0}^{2 n} \sum_{k=0}^{p}\left(-x_{1}\right)^{n-k}\binom{n}{k}\left(-x_{2}\right)^{k+n-p}\binom{n}{p-k} * x^{p}
$$

Now is the sum of absolute values of coefficients (for $x=1$)

```
alfa=(1 + Sqrt[5])/2; beta = (Sqrt[5] - 1)/2;
Quiet[
    FullSimplify[
    Table[
    Sum[Abs[Sum[Binomial[n,k]*Binomial[n, p-k]* (-alfa)^(n-k)* beta^(n-p+k),
        {k, 0, p}]], {p, 0, 2n}], {n, 0, 20}]]]
{1, 3, 7, 13, 35, 83, 165, 367, 899, 1957, 3839, 9771, 22 709,
43213, 102 963, 255061, 525601, 1098 339, 2 798273, 6202 969, 11746 259}
```

Simplified to

$$
a_{n}=\sum_{p=0}^{2 n}\left|\sum_{k=0}^{n}(-1)^{k}\left(\frac{\sqrt{5}+1}{2}\right)^{p-2 k}\binom{n}{k}\binom{n}{p-k}\right|
$$

Maximal term of outer sum is at position

$$
p=n
$$

and function is symmetrical, see following graph

```
n=200;
ListPlot[
Table[
    Log[
        Abs[Sum[N[Binomial[n,k] * Binomial[n, p-k]* (-1)^k*alfa^(p-2k)],
```

 \(\{k, 0, p\}]\}],\{p, 0,2 n\}]\}\)

Now, if we search main asymptotic term only, is sufficient (for purpose of this proof) find the value at the maximum and then

$$
\lim _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n}=\lim _{n \rightarrow \infty}\left(2 n * a_{n \max }\right)^{1 / n}
$$

For $p=n$ we have sum

$$
\sum_{k=0}^{n}(-1)^{k}\left(\frac{\sqrt{5}+1}{2}\right)^{n-2 k}\binom{n}{k}\binom{n}{n-k}=\sum_{k=0}^{n}(-1)^{k}\left(\frac{\sqrt{5}+1}{2}\right)^{n-2 k}\binom{n}{k}^{2}
$$

Generally, sum

$$
\sum_{k=0}^{n}(-1)^{k} z^{k}\binom{n}{k}^{2}=(1+z)^{n} * P_{n}\left(\frac{1-z}{1+z}\right)
$$

where P_{n} is Legendre polynomial.
For non-alternating sum see [3]. Note, that generating function for this sum is

$$
\frac{1}{\sqrt{1+(2 z-2) x+(z+1)^{2} x^{2}}}
$$

In our case is

$$
z=\frac{1}{\left(\frac{\sqrt{5}+1}{2}\right)^{2}}
$$

and

$$
\sum_{k=0}^{n}(-1)^{k}\left(\frac{\sqrt{5}+1}{2}\right)^{n-2 k}\binom{n}{k}^{2}=\left(\frac{\sqrt{5}+1}{2}\right)^{n}(1+z)^{n} * P_{n}\left(\frac{1}{\sqrt{5}}\right)
$$

Asymptotic of Legendre polynomials is already know, see for example [5].
For $x>1$ and $n \rightarrow \infty$

$$
P_{n}(x) \sim \frac{\left(\sqrt{x^{2}-1}+x\right)^{n+\frac{1}{2}}}{\sqrt{2 \pi n} \sqrt[4]{x^{2}-1}}
$$

For small arguments (our case)

$$
P_{n}(\cos (x)) \sim \sqrt{\frac{2}{\pi n \sin (x)}} * \cos \left(\left(n+\frac{1}{2}\right) x-\frac{\pi}{4}\right)
$$

and

$$
\lim _{n \rightarrow \infty}\left(P_{n}\left(\frac{1}{\sqrt{5}}\right)\right)^{1 / n}=1
$$

Finally

$$
\lim _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n}=\lim _{n \rightarrow \infty}\left(\left(\frac{\sqrt{5}+1}{2}\right)^{n} *(1+z)^{n} * P_{n}\left(\frac{1}{\sqrt{5}}\right)\right)^{1 / n}=\left(\frac{\sqrt{5}+1}{2}\right) *\left(1+\frac{1}{\left(\frac{\sqrt{5}+1}{2}\right)^{2}}\right)=\sqrt{5}
$$

QED.

References:

[1] OEIS - The On-Line Encyclopedia of Integer Sequences
[2] Kotěšovec V., Interesting asymptotic formulas for binomial sums, website 9.6.2013
[3] Kotěšovec V., Asymptotic of a sums of powers of binomial coefficients * $x^{\wedge} \mathrm{k}$, website 20.9.2012
[4] Kotěšovec V., Asymptotic of generalized Apéry sequences with powers of binomial coefficients, website 4.11.2012
[5] F. W. J. Olver, "Asymptotics and Special Functions", Academic Press, New York, 1974.

This article was published on website http://web.telecom.cz/vaclav.kotesovec/math.htm, 26.7.2013

