Asymptotic of sequence A227403

(Václav Kotěšovec, published 21.9.2013)

In the OEIS (On-Line Encyclopedia of Integer Sequences) published Paul D. Hanna 20.9.2003 a sequence A227403

$$
a_{n}=\sum_{k=0}^{n}\binom{n^{2}}{n k}\binom{n k}{k^{2}}
$$

I found following limit

$$
\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n}\binom{n^{2}}{n k}\binom{n k}{k^{2}}\right)^{\frac{1}{n^{2}}}=r^{-\frac{(1+r)^{2}}{2 r}}=2.93544172048274 \ldots
$$

where $r=0.6032326837741362 \ldots$ is the root of the equation

$$
(1-r)^{2 r}=r^{2 r+1}
$$

Proof: We find the maximal term with the help of Stirling's approximation, derivative must be zero

```
stirling[n_] := n^n/E^n*Sqrt[2*Pi*n];
binom[n_, k_] := stirling[n]/stirling[k]/stirling[n-k];|
FullSimplify[D[binom[n^2,n*n*r]*\operatorname{binom[n* n*r,(n*x)^2], r]]}
- \frac{1}{4\pi}(\mp@subsup{n}{}{2}\mp@subsup{)}{}{\frac{3}{2}+\mp@subsup{n}{}{2}}(-\mp@subsup{n}{}{2}(-1+r)\mp@subsup{)}{}{-\frac{1}{2}+\mp@subsup{n}{}{2}(-1+r)}(-\mp@subsup{n}{}{2}(-1+r)r\mp@subsup{)}{}{-\frac{3}{2}+\mp@subsup{n}{}{2}(-1+r)r}(\mp@subsup{n}{}{2}\mp@subsup{r}{}{2}\mp@subsup{)}{}{-\frac{1}{2}-\mp@subsup{n}{}{2}\mp@subsup{r}{}{2}}\mp@subsup{}{}{2}
    (3-5r+2 n
Limit[
```



```
    n^2,n}->\mathrm{ Infinity]
2(-1+r)r(Log[1-r]+(-1+2r) Log[-(-1+r)r]-2r Log[r}\mp@subsup{r}{}{2}]
```

The maximal term is asymptotically at position $k=r * n$, where r is the root of the equation

Numerically

$$
(1-r)^{2 r}=r^{2 r+1}
$$

```
FindRoot[(1-r)^(2*r) == r^ (2*r + 1), {r, 1/2},WorkingPrecision }->\mathrm{ ( 50]
```

$\{r \rightarrow 0.60323268377413620622019265094866822042096251421175\}$

Following graph is in the logarithmical scale

Value in the maximum satisfy the inequality

$$
\binom{n^{2}}{r n^{2}}\binom{r n^{2}}{r^{2} n^{2}} \leq \sum_{k=0}^{n}\binom{n^{2}}{n k}\binom{n k}{k^{2}} \leq n *\binom{n^{2}}{r n^{2}}\binom{r n^{2}}{r^{2} n^{2}}
$$

and

$$
\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n}\binom{n^{2}}{n k}\binom{n k}{k^{2}}\right)^{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty}\left(\binom{n^{2}}{r n^{2}}\binom{r n^{2}}{r^{2} n^{2}}\right)^{\frac{1}{n^{2}}}
$$

```
FullSimplify[PowerExpand[(binom[n^2, n* n*r]* binom[n*n*r,(n*r)^2])^(1/n^2)]]
```

$n^{2-2 r^{2}}(2 \pi)^{-\frac{1}{n^{2}}}\left(-n^{2}(-1+r)\right)^{-1-\frac{1}{2 n^{2}}+r} r r^{-\frac{1}{n^{2}}-2 r^{2}}\left(-n^{2}(-1+r) r\right)^{-\frac{1}{2 n^{2}}+(-1+r) r}$

This expression can be simplified after substitution

$$
1-r=r^{\frac{2 r+1}{2 r}}
$$

FullSimplify
PowerExpand $\left[n^{2-2 r^{2}}(2 \pi)^{-\frac{1}{n^{2}}}\left(n^{2} *\left(r^{\wedge}((2 * r+1) /(2 * r))\right)\right)^{-1-\frac{1}{2 n^{2}+r} r^{-\frac{1}{n^{2}}-2 r^{2}} .}\right.$ $\left.\left.\left(n^{2} *\left(x^{\wedge}((2 * r+1) /(2 * r))\right) * x\right)^{-\frac{1}{2 n^{2}}+(-1+r) r}\right]\right]$

$$
\mathrm{n}^{-\frac{2}{\mathrm{n}^{2}}}(2 \pi)^{-\frac{1}{\mathrm{n}^{2}}} \mathrm{r}^{-\frac{1+5 \mathrm{r}+\mathrm{n}^{2}(1+\mathrm{r})^{2}}{2 \mathrm{n}^{2} \mathrm{r}}}
$$

$$
\operatorname{Limit}\left[n^{-\frac{2}{n^{2}}}(2 \pi)^{-\frac{1}{n^{2}}} r^{-\frac{1+5 r+n^{2}(1+r)^{2}}{2 n^{2} r}}, n \rightarrow \text { Infinity }\right]
$$

$$
r^{-\frac{(1+r)^{2}}{2 r}}
$$

and final result is

$$
\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n}\binom{n^{2}}{n k}\binom{n k}{k^{2}}\right)^{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty}\left(\binom{n^{2}}{r n^{2}}\binom{r n^{2}}{r^{2} n^{2}}\right)^{\frac{1}{n^{2}}}=r^{-\frac{(1+r)^{2}}{2 r}}=2.93544172048274 \ldots
$$

Numerical verification:

This was a rigorous proof and we obtain the main asymptotic term. Following results are experimental. Let

$$
c=r^{-\frac{(1+r)^{2}}{2 r}}=2.93544172048274 \ldots
$$

Following limit does not exist,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{c^{n^{2}}} * n^{2}
$$

but graph of this function is interesting:

```
ListPlot[
    Table[(Sum[Binomial[n^2, n*k]*Binomial[n*k, k^2], {k, 0, n}])/
        C^}(\mp@subsup{n}{}{\wedge}2)*\mp@subsup{n}{}{\wedge}2,{n, 1, 200}]] ]
```


Or, with more values

```
c= r^^(- (1 +r)^2 / (2*r)) /. FindRoot[(1-r)^ (2*r)=r r^^(2*r+1),{x, 1/2},
    WorkingPrecision }->\mathrm{ 100];
val = ParallelTable[(Sum[Binomial [n^ 2, n*k]* Binomial[n*k, k^2], {k, 0, n}])/C^(n^2)**
    n^2, {n, 1, 1000}];
ListPlot[val]|
```


My conjecture is following:

$$
a_{n}=\sum_{k=0}^{n}\binom{n^{2}}{n k}\binom{n k}{k^{2}} \sim \frac{c^{n^{2}}}{n^{2}} *\left(g+h * \cos \left(2 \pi\left(\frac{n}{p}+\frac{d}{5}\right)\right)\right)
$$

where

$$
d=\bmod (n, 5)=n-5\left\lfloor\frac{n}{5}\right\rfloor
$$

period
and constants

$$
p=309.3 \ldots
$$

$$
g=0.781789 \ldots, \quad h=0.113917 \ldots
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup \frac{a_{n}}{c^{n^{2}}} * n^{2}=g+h \sim 0.8957 \ldots \\
& \lim _{n \rightarrow \infty} \inf \frac{a_{n}}{c^{n^{2}}} * n^{2}=g-h \sim 0.6678 \ldots
\end{aligned}
$$

In following graph is array "val" defined as

$$
\operatorname{val}(n)=\frac{a_{n}}{c^{n^{2}}} * n^{2}
$$

Numerical results for first 1000 terms.

References:

[1] OEIS - The On-Line Encyclopedia of Integer Sequences
[2] Kotěšovec V., Interesting asymptotic formulas for binomial sums, website 9.6.2013
[3] Kotěšovec V., Asymptotic of a sums of powers of binomial coefficients * $x^{\wedge} k$, website 20.9.2012
[4] Kotěšovec V., Asymptotic of generalized Apéry sequences with powers of binomial coefficients, website 4.11.2012

