Asymptotic of sequences A161630, A212722, A212917 and A245265

(Václav Kotěšovec, published July 16 2014)
In the OEIS (On-Line Encyclopedia of Integer Sequences) published Paul D. Hanna in 2009 sequences A161630, A212722, A212917 and I added in 2014 sequence A245265, which can be generalized (for $p \geq 1$) as the family of the sequences with an exponential generating function $\mathrm{A}(\mathrm{x})$, satisfies functional equation

$$
A(x)=\exp \left(\frac{x}{1-x A(x)^{p}}\right)
$$

or as the sum

$$
a_{n}=\sum_{k=0}^{n} \frac{n!}{k!} *\binom{n-1}{n-k} *(1+p *(n-k))^{k-1}
$$

Theorem (V. Kotěšovec, July 15 2014):
Asymptotic

$$
a_{n} \sim \frac{n^{n-1} p^{n-1+\frac{1}{p}}\left(1+2 * \operatorname{LambertW}\left(\frac{\sqrt{p}}{2}\right)\right)^{n+\frac{1}{2}}}{e^{n} 2^{2 * n+\frac{2}{p}} \operatorname{LambertW}\left(\frac{\sqrt{p}}{2}\right)^{2 * n+\frac{2}{p}-\frac{1}{2}} \sqrt{1+\operatorname{LambertW}\left(\frac{\sqrt{p}}{2}\right)}}
$$

Proof:

Following theorem by Edward A. Bender is (in case of implicit functions) very useful (for proof see [1], p. 505 and also [4], p.469).

Citation: Edward A. Bender, "Asymptotic methods in enumeration" (1974), p.502, see [1]
Theorem 5. Assume that the power series $w(z)=\sum a_{n} z^{n}$ with nonnegative coefficients satisfies $F(z, w) \equiv 0$. Suppose there exist real numbers $r>0$ and $s>a_{0}$ such that
(i) for some $\delta>0, F(z, w)$ is analytic whenever $|z|<r+\delta$ and $|q|<s+\delta$;
(ii) $F(r, s)=F_{w}(r, s)=0$;
(iii) $F_{z}(r, s) \neq 0$, and $F_{w w}(r, s) \neq 0$: and
(iv) if $|z| \leqq r,|w| \leqq s$, and $F(z, w)=F_{w}(z, w)=0$, then $z=r$ and $w=s$.

Then

$$
\begin{equation*}
a_{n} \sim\left(\left(r F_{z}\right) /\left(2 \pi F_{w w}\right)\right)^{1 / 2} n^{-3 / 2} r^{-n} \tag{7.1}
\end{equation*}
$$

where the partial derivatives F_{z} and $F_{w w}$ are evaluated at $z=r, w=s$.

Bender's formula modified for exponential generating function is

$$
\begin{gathered}
\frac{a_{n}}{n!} \sim \frac{1}{n r^{n}} \sqrt{\frac{r F_{z}}{2 \pi n F_{w w}}} \\
a_{n} \sim \frac{n^{n-1}}{e^{n} r^{n-1 / 2}} \sqrt{\frac{F_{z}}{F_{w w}}}
\end{gathered}
$$

Now we have the implicit function

$$
f(x, y)=e^{\frac{x}{1-x y^{p}}}-y
$$

partial derivatives		
F_{z}	$\frac{\partial}{\partial x} f(x, y)$	$\frac{e^{\frac{x}{1-x y^{p}}}}{\left(x y^{p}-1\right)^{2}}$
F_{w}	$\frac{\partial}{\partial y} f(x, y)$	$\frac{p x^{2} y^{p-1} e^{\frac{x}{1-x y^{p}}}}{\left(x y^{p}-1\right)^{2}}-1$
$F_{w w}$	$\frac{\partial}{\partial y} \frac{\partial}{\partial y} f(x, y)$	$-\frac{p x^{2} y^{p-2} e^{\frac{x}{1-x y^{p}}}\left(p\left(x^{2} y^{p}\left(y^{p}-1\right)-1\right)+\left(x y^{p}-1\right)^{2}\right)}{\left(x y^{p}-1\right)^{4}}$

r, s, are roots of the system of equations

$$
e^{\frac{r}{1-r s^{p}}}-s=0 \quad \frac{p r^{2} s^{p-1} e^{\frac{r}{1-r s^{p}}}}{\left(r s^{p}-1\right)^{2}}-1=0
$$

From first equation we have

$$
r=\frac{1}{s^{p}+\frac{1}{\log (s)}}
$$

and second equation can be reduced

$$
\begin{gathered}
p r^{2} s^{p}=\left(r s^{p}-1\right)^{2} \\
p s^{p}(\log (s))^{2}=1 \\
s=e^{\frac{2 W\left(\frac{\sqrt{p}}{2}\right)}{p}}=\left(\frac{\sqrt{p}}{2 W(\sqrt{p} / 2)}\right)^{\frac{2}{p}}
\end{gathered}
$$

where W is the LambertW function

$$
r=\frac{4(W(\sqrt{p} / 2))^{2}}{p(1+2 W(\sqrt{p} / 2))}
$$

The asymptotic is then

$$
a_{n} \sim \frac{n^{n-1}}{e^{n} r^{n-1 / 2}} \sqrt{\frac{F_{z}}{F_{w w}}}=e^{-n} n^{n-1} r^{-n} \sqrt{-\frac{s^{2-p}\left(r s^{p}-1\right)^{2}}{p r\left(p\left(r^{2} s^{p}\left(s^{p}-1\right)-1\right)+\left(r s^{p}-1\right)^{2}\right)}}
$$

and after simplification

$$
a_{n} \sim \frac{n^{n-1} p^{n-1+\frac{1}{p}}(1+2 * W(\sqrt{p} / 2))^{n+\frac{1}{2}}}{e^{n} 2^{2 * n+\frac{2}{p}} W(\sqrt{p} / 2)^{2 * n+\frac{2}{p}-\frac{1}{2}} \sqrt{1+W(\sqrt{p} / 2)}}
$$

Numerical verification (for $\mathrm{p}=4$, sequence A245265)

```
Show [
    ListPlot[
        Table[Sum[n!* (1 + p* (n-k))^ (k-1)/k!* Binomial[n-1,n-k], {k, 0, n}]/
            (p^(n-1 + 1/p) * (1 + 2 * LambertW [Sqrt[p]/2])^(n+1/2) *
                n^ (n-1) / (Sqrt[1 + LambertW [Sqrt[p]/2]]*E^n* 2^ (2 * n + 2 / p) *
                    LambertW[Sqrt[p]/2]^(2*n+2/p-1/2)))/.p->4, {n, 1, 100}]],
    Plot[1, {n, 1, 100}, PlotStyle }->\mathrm{ Red]]
```


References:

[1] Edward A. Bender, Asymptotic methods in enumeration, SIAM Review 16 (1974), no. 4, 485-515
[2] Kotěšovec V., Asymptotic of implicit functions if $\mathrm{Fww}=0$, extension of theorem by Bender, website 19.1.2014
[3] OEIS - The On-Line Encyclopedia of Integer Sequences
[4] P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, p. 469
[5] Kotěšovec V., Interesting asymptotic formulas for binomial sums, website 9.6.2013
[6] Kotěšovec V., Asymptotic of a sums of powers of binomial coefficients * $x^{\wedge} k$, website 20.9.2012
[7] Kotěšovec V., Asymptotic of sequences A244820, A244821 and A244822, website (and OEIS) 11.7.2014

This article was published on the website http://web.telecom.cz/vaclav.kotesovec/math.htm, 16.7.2014 and in the OEIS, July 162014

