Asymptotic solution of the equations using the Lambert W-function

(Václav Kotěšovec, published Aug 08 2014)

The defining equation for Lambert W-function is $W(z) e^{W(z)} = z$. In the Wikipedia is one nice example, how to solve a simple transcendental equation

$$p^{ax+b} = cx + d$$

using the Lambert W-function.

Programs Mathematica (where ProductLog is same function as LambertW) and Maple solve this equation correctly, but for a little more complicated equations (for example $x(1 + x) e^x = n$) we are not able to find an explicit solution.

If $n \to \infty$ then for $x(1+x) e^x = n$ also $x \to \infty$ and from terms $e^x x + e^x x^2$ is $e^x x^2$ a dominant term. We get the asymptotic solution of the equation $x(1+x) e^x = n$ from an exact solution of the equation $x^2 e^x = n$.

Solve
$$[x^2 * E^x = n, x]$$

 $\left\{\left\{x \rightarrow 2 \operatorname{ProductLog}\left[-\frac{\sqrt{n}}{2}\right]\right\}, \left\{x \rightarrow 2 \operatorname{ProductLog}\left[\frac{\sqrt{n}}{2}\right]\right\}\right\}$ $x \sim 2 \operatorname{LambertW}\left(\frac{\sqrt{n}}{2}\right)$

Now is a very important check, if this root is asymptotically correct. We substitute it to the first equation and following limit must be equal to 1.

Difference between the exact and the asymptotic solution tends to zero.

Applications

The following theorem by W. K. Hayman is very useful.

Citation from the book: Herbert S. Wilf, generatingfunctionology, 2ed 1989, p.183

Next define two auxiliary functions,

5.4 Analyticity and asymptotics (III): Hayman's method

$$a(r) = r \frac{f'(r)}{f(r)}$$
(5.4.4)

183

and

$$b(r) = ra'(r) = r\frac{f'(r)}{f(r)} + r^2 \frac{f''(r)}{f(r)} - r^2 \left(\frac{f'(r)}{f(r)}\right)^2.$$
 (5.4.5)

The main result is the following:

Theorem 5.4.1. (Hayman) Let $f(z) = \sum a_n z^n$ be an admissible function. Let r_n be the positive real root of the equation $a(r_n) = n$, for each n = 1, 2, ..., where a(r) is given by eq. (5.4.4) above. Then

$$a_n \sim \frac{f(r_n)}{r_n^n \sqrt{2\pi b(r_n)}}$$
 as $n \to +\infty$, (5.4.6)

where b(r) is given by (5.4.5) above.

We now use Hayman's method to find the asymptotic behavior of the sequence A216688 from the OEIS. The exponential generating function is

$$f(x) = e^{x e^{x^2}}$$

This function is admissible, see [5], p.564 (VIII. 5. Admissibility) for more. We have equation

$$r * \frac{f'(r)}{f(r)} = r * \frac{e^{e^{r^2}r}(e^{r^2} + 2e^{r^2}r^2)}{e^{e^{r^2}r}} = r e^{r^2}(1 + 2r^2) = n$$

The asymptotic is

$$a_n \sim n! * \frac{f(r)}{r^n * \sqrt{2\pi \left(r * \frac{f'(r)}{f(r)} + r^2 * \frac{f''(r)}{f(r)} - r^2 * \left(\frac{f'(r)}{f(r)}\right)^2\right)}} \sim \frac{n^n}{r^n * e^{\frac{2r^2n}{1+2r^2}} * \sqrt{3+2r^2 - \frac{2}{1+2r^2}}}$$

The root of the equation $r e^{r^2}(1 + 2r^2) = n$ is dependent on *n* and we are not able to find an **explicit** solution (only numerically). Now we apply the method from page 1. The dominant term is $r e^{r^2} 2r^2$ and we are able to find an asymptotic solution of this equation.

Solve
$$\left[\mathbf{r} \left(2 e^{\mathbf{r}^2} \mathbf{r}^2 \right) = \mathbf{n}, \mathbf{r} \right]$$

 $\left\{ \left\{ \mathbf{r} \rightarrow -\sqrt{\frac{3}{2}} \sqrt{\operatorname{ProductLog} \left[\frac{1}{3} 2^{1/3} \mathbf{n}^{2/3} \right]} \right\}, \left\{ \mathbf{r} \rightarrow \sqrt{\frac{3}{2}} \sqrt{\operatorname{ProductLog} \left[\frac{1}{3} 2^{1/3} \mathbf{n}^{2/3} \right]} \right\} \right\}$
Limit $\left[\mathbf{r} \left(e^{\mathbf{r}^2} + 2 e^{\mathbf{r}^2} \mathbf{r}^2 \right) / \mathbf{n} / \cdot \mathbf{r} \rightarrow \sqrt{\frac{3}{2}} \sqrt{\operatorname{ProductLog} \left[\frac{1}{3} 2^{1/3} \mathbf{n}^{2/3} \right]} , \mathbf{n} \rightarrow \operatorname{Infinity} \right]$
1

Asymptotic solution of the equation is

$$r \sim \sqrt{\frac{3}{2}} LambertW\left(\frac{1}{3}\sqrt[3]{2}n^{2/3}\right)$$

Blue graph is an exact (numerical) solution of our equation, red graph is the asymptotic solution of same equation.

We simplify an expression $f(r) * r^{-n}$

$$\begin{aligned} & \operatorname{FunctionExpand}\left[\operatorname{Exp}\left[\operatorname{Expand}\left[\operatorname{FunctionExpand}\left[\operatorname{e}^{r^{2}} r / \cdot r \right] + \sqrt{\frac{3}{2}} \sqrt{\operatorname{ProductLog}\left[\frac{1}{3} 2^{1/3} n^{2/3}\right]}\right]\right]\right]\right] \star \\ & \left(\sqrt{\frac{3}{2}} \sqrt{\operatorname{ProductLog}\left[\frac{1}{3} 2^{1/3} n^{2/3}\right]}\right) \wedge (-n) \\ & \left(\frac{2}{3}\right)^{n/2} e^{\frac{n}{3 \operatorname{ProductLog}\left[\frac{1}{3} 2^{1/3} n^{2/3}\right]} \operatorname{ProductLog}\left[\frac{1}{3} 2^{1/3} n^{2/3}\right]^{-n/2}} \end{aligned}$$

Explicit asymptotic is (dominant term):

$$\left(\frac{a_n}{n!}\right)^{1/n} \sim \frac{f(r)^{1/n}}{r} \sim e^{\frac{1}{3*LambertW}\left(\frac{2^{1/3}n^{2/3}}{3}\right)} * \sqrt{\frac{2}{3*LambertW}\left(\frac{2^{1/3}n^{2/3}}{3}\right)}}$$

Ratio a_n / asymptotic tends to 1

Ratio, using the Lambert W-function

List of sequences from the OEIS, where I applied this method:

A003727, A009153, A009229, A052506, A053530, A060311, A065143, A216507, A216688, A216689, A240165, A240989, A245834, A245835

References:

- [1] OEIS The On-Line Encyclopedia of Integer Sequences
- [2] Herbert S. Wilf, generatingfunctionology, 2ed 1989
- [3] A. M. Odlyzko, Asymptotic enumeration methods, pp. 1063-1229 of R. L. Graham et al., Handbook of Combinatorics, 1995
- [4] W. K. Hayman, A generalisation of Stirling's formula, Journal für die reine und angewandte Mathematik ,1956, vol. 196, p. 67-95
- [5] P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009
- [6] R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999, problem 5.15b (sequence A053530)
- [7] Edward A. Bender, Asymptotic methods in enumeration, SIAM Review 16, 1974
- [8] V. Kotěšovec, Asymptotic of implicit functions if Fww = 0, extension of theorem by Bender, website 19.1.2014
- [9] V. Kotěšovec, Interesting asymptotic formulas for binomial sums, website 9.6.2013

This article was published on the website http://web.telecom.cz/vaclav.kotesovec/math.htm, 8.8.2014 and in the OEIS, Aug 08 2014