Asymptotics of sequence $\mathbf{A 0 0 2 5 1 3}$

(Václav Kotěšovec, published Aug 24 2019)

The sequence A002513 in OEIS (see [1]) is originally defined as an expansion of product

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-x^{2 k}\right)^{2} *\left(1-x^{2 k-1}\right)}
$$

in powers of x .

Main result:

$$
A 002513(n) \sim \frac{e^{\pi \sqrt{n}}}{8 n^{5 / 4}} *\left(1-\frac{\frac{\pi}{16}+\frac{15}{8 \pi}}{\sqrt{n}}\right)
$$

Proof:

The generating function is also

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-x^{k}\right) *\left(1-x^{2 k}\right)}
$$

In the notation from [2] we have a formula for the main asymptotic term:

```
convsubexpfun[partminus [1, 1], partminus [2, 2]]
\frac{e}{\sqrt{}{n}\pi}
```

For a minor asymptotic of the convolution of two sub-exponential functions I obtained in 2017 (using a several steps of "Series" in Mathematica) the general formula:

Let

$$
f 1(n) \sim \frac{e^{r 1 \sqrt{n}}}{n^{b 1}} *\left(1+\frac{c 1}{\sqrt{n}}\right)
$$

and

$$
f 2(n) \sim \frac{e^{r 2 \sqrt{n}}}{n^{b 2}} *\left(1+\frac{c 2}{\sqrt{n}}\right)
$$

where $r 1>0, b 1, c 1$ and $r 2>0, b 2, c 2$ are constants, then convolution of $f 1(n)$ and $f 2(n)$ is asymptotic to

```
convsubexpfun[Exp[r1*Sqrt[n]]/n^b1, Exp[r2*Sqrt[n]]/n^b2] * (1 + minorsqrt[r1,b1,c1,r2,b2,c2]/Sqrt[n])
```

where convsubexpfun see [2] and

$$
\begin{aligned}
& \text { minorsqrt }\left[r 1_{-}, b 1_{-}, c 1_{-}, r 2_{-}, b 2_{-}, c 2_{-}\right]:= \\
& \text {Simplify }\left[\left(\frac{c 1}{r 1}+\frac{c 2}{r 2}\right) * \sqrt{\left(r 1^{2}+r 2^{2}\right)}+\right. \\
& \quad\left(2 *\left(b 1+b 2+(b 1-b 2)^{\wedge} 2\right)+(2 b 1-1) * b 1 *\left(r 2^{\wedge} 2-r 1^{\wedge} 2\right) / r 1^{\wedge} 2+\right. \\
& \left.\left.\quad(2 b 2-1) * b 2 *\left(r 1^{\wedge} 2-r 2^{\wedge} 2\right) / r 2^{\wedge} 2-15 / 8\right) / \sqrt{\left(r 1^{2}+r 2^{2}\right)}\right] ;
\end{aligned}
$$

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-x^{k}\right)}
$$

is the generating function for a partitions (see A000041).
From Hardy-Ramanujan-Rademacher formula follows

$$
\begin{aligned}
& \text { (* A000041 (n) minor asymptotic terms *) } \\
& \frac{1}{4 \sqrt{3} n} e^{\sqrt{\frac{2}{3}} \sqrt{n} \pi} \\
& \left(1-\frac{\frac{\sqrt{\frac{3}{2}}}{\pi}+\frac{\pi}{24 \sqrt{6}}}{\sqrt{n}}+\frac{\frac{1}{16}+\frac{\pi^{2}}{6912}}{n}-\frac{\frac{\sqrt{\frac{3}{2}}}{16 \pi}+\frac{\pi}{384 \sqrt{6}}+\frac{\pi^{3}}{497664 \sqrt{6}}}{n^{3 / 2}}+\frac{\frac{5}{1536}+\frac{5 \pi^{2}}{497664}+\frac{\pi^{4}}{286654464}}{n^{2}}-\right. \\
& \frac{5}{\frac{512 \sqrt{6} \pi}{1}+\frac{5 \pi}{36864 \sqrt{6}}+\frac{5 \pi^{3}}{31850496 \sqrt{6}}+\frac{\pi^{5}}{34398535680 \sqrt{6}}}+\frac{\frac{35}{n^{5 / 2}}+\frac{35 \pi^{2}}{63700992}+\frac{7 \pi^{4}}{22932357120}+\frac{n^{3}}{29720334827520}}{n^{6}}
\end{aligned}
$$

This expansion also follows from an expansion of the BesselI function (see [4]) and the formula

$$
A 000041(n) \sim \frac{2 \pi \operatorname{Bessel}\left(\frac{3}{2}, \sqrt{24 n-1} * \frac{\pi}{6}\right)}{(24 n-1)^{3 / 4}}
$$

$$
\begin{aligned}
& \text { besseliasy }\left[r_{-}, z_{-}\right]:= \\
& \operatorname{Exp}[z] / \operatorname{Sqrt}[2 \mathrm{Pi} * z] \text { * } \\
& \left(1-\left(4 r^{\wedge} 2-1\right) /(8 z)+\left(4 r^{\wedge} 2-1\right) *\left(4 r^{\wedge} 2-9\right) /\left(2!(8 z)^{\wedge} 2\right)-\right. \\
& \left.\left(4 r^{\wedge} 2-1\right) *\left(4 r^{\wedge} 2-9\right) *\left(4 r^{\wedge} 2-25\right) /\left(3!(8 z)^{\wedge} 3\right)\right) \text {; } \\
& 2 \text { * Pi * besseliasy [3/2, Sqrt [24n-1] *Pi / 6] / (24n-1)^(3/4) } \\
& \frac{2 \sqrt{3} e^{\frac{1}{6} \sqrt{-1+24 n} \pi}\left(1-\frac{6}{\sqrt{-1+24 n} \pi}\right)}{-1+24 n} \\
& \text { Simplify }\left[\text { Normal }\left[\text { Series }\left[\% /\left(\frac{e^{\sqrt{\frac{2}{3}} \sqrt{n} \pi}}{4 \sqrt{3} n}\right),\{n, \text { Infinity, } 1\}\right]\right]\right] \\
& 1-\frac{72+\pi^{2}}{24 \sqrt{6} \sqrt{n} \pi}+\frac{432+\pi^{2}}{6912 n}
\end{aligned}
$$

We have a constants

$$
r 1=\pi \sqrt{\frac{2}{3}} \quad b 1=1 \quad c 1=-\frac{\sqrt{\frac{3}{2}}}{\pi}-\frac{\pi}{24 \sqrt{6}}
$$

The second generating function is

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-x^{2 k}\right)}
$$

and the second asymptotics (for even powers) we get from the previous formula after substitution $n \rightarrow \frac{n}{2}$

$$
r 2=\frac{\pi}{\sqrt{3}} \quad b 2=1 \quad c 2=-\sqrt{2}\left(\frac{\sqrt{\frac{3}{2}}}{\pi}+\frac{\pi}{24 \sqrt{6}}\right)
$$

After substitution of $\mathrm{r} 1, \mathrm{~b} 1, \mathrm{c} 1$ and $\mathrm{r} 2, \mathrm{~b} 2, \mathrm{c} 2$ into the formula we get an expression

$$
\begin{aligned}
& \text { Expand }\left[\operatorname{Simplify}\left[\operatorname{minorsqrt}\left[\sqrt{\frac{2}{3}} \pi, 1,-\frac{\sqrt{\frac{3}{2}}}{\pi}-\frac{\pi}{24 \sqrt{6}}, \frac{\pi}{\sqrt{3}}, 1,-\sqrt{2}\left(\frac{\sqrt{\frac{3}{2}}}{\pi}+\frac{\pi}{24 \sqrt{6}}\right)\right]\right]\right] \\
& -\frac{15}{8 \pi}-\frac{\pi}{16} \\
& N[\%, 60] \\
& -0.793180577443969586537229324101897787891546758987655796614687
\end{aligned}
$$

The final asymptotic is

$$
\frac{e^{\pi \sqrt{n}}}{8 n^{5 / 4}} *\left(1-\frac{\frac{\pi}{16}+\frac{15}{8 \pi}}{\sqrt{n}}\right)
$$

Note that for a sequence A000009 with the generating function

$$
\prod_{k=1}^{\infty}\left(1+x^{k}\right)
$$

we have a similar expansion

$$
\begin{aligned}
& \frac{1}{4 \times 3^{1 / 4} n^{3 / 4}} \\
& e^{\frac{\sqrt{n} \pi}{\sqrt{3}}}\left(1+\frac{-\frac{3 \sqrt{3}}{8 \pi}+\frac{\pi}{48 \sqrt{3}}}{\sqrt{n}}+\frac{-\frac{5}{128}-\frac{45}{128 \pi^{2}}+\frac{\pi^{2}}{13824}}{n}+\frac{-\frac{315 \sqrt{3}}{1024 \pi^{3}}+\frac{35 \sqrt{3}}{2048 \pi}-\frac{35 \pi}{36864 \sqrt{3}}+\frac{\pi^{3}}{1990656 \sqrt{3}}}{n^{3 / 2}}+\right. \\
& \left.\frac{\frac{105}{65536}-\frac{42525}{32768 \pi^{4}}+\frac{315}{16384 \pi^{2}}-\frac{7 \pi^{2}}{1769472}+\frac{\pi^{4}}{1146617856}}{n^{2}}\right)
\end{aligned}
$$

Numerical verification, the asymptotic ratio tends to 1 :

Richardson extrapolation, from 100000 terms of the sequence. The convergence is very good.

```
$MaxExtraPrecision = 1000;
funs[n_]:=A002513[[n]]/(\frac{\mp@subsup{e}{}{\sqrt{}{n}\pi}(1-\frac{\frac{15}{8\pi}+\frac{\pi}{16}}{\sqrt{}{n}})}{8\mp@subsup{n}{}{5/4}});
Do[
    Print[
    N[Sum[(-1)^(m+j) * funs[j *Floor[Length[A002513]/m]] *
        j^(m-1)/(j-1)!/(m-j)!, {j, 1, m}], 40]], {m, 10, 200, 10}]
0.9999999999007739882370509816807619536984
0.9999999999668488887365625833353730059168
0.9999999999822704690609118701133205704664
0.9999999999885860089615093620834664950522
0.9999999999918749766337564384627573823552
0.9999999999938365402446391111515780420585
0.9999999999951208331974891126577583702234
```


References:

[1] OEIS - The On-Line Encyclopedia of Integer Sequences
[2] V. Kotěšovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO]
[3] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc., 1917, 75-115
[4] Wikipedia, Bessel function

