
Interesting asymptotic formulas for binomial sums 

(Václav Kotěšovec, published 9.6.2013, extended 28.6.2013) 
 

 

In October and November 2012 I discovered over 400 asymptotic formulas for sequences in the OEIS (On-Line 

Encyclopedia of Integer Sequences). Most of which are certainly new. This article is a selection of the most 

interesting. In addition, formulas are more readable if are published in classical mathematical format than in 

text format only. 
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1) Basic binomial sums 
 

OEIS - A072034 

  
 
 
   

 

   

   

 
 

           
 
  

 

 

            
 
  

                                                      

 

We find the maximal term with the help of Stirling's formula. The maximum is a point where the first 

derivative is equal to zero. 

 
 

 

(ProductLog = LambertW) 

 

 

 

 

r is the root of the equation 

 
 

   
 
 

   

 

 
The maximal term in the sum is at position    , following graph is in the logarithmical scale. 

 

 

http://oeis.org/
http://oeis.org/A072034
http://mathworld.wolfram.com/StirlingsApproximation.html
http://en.wikipedia.org/wiki/Lambert_W_function
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The value at the maximum is 

 

   
 
          

  
   

 
 
 

   
 

     

     
  

 

  
 
 

 

 

  
 

   
 

 

           
 
 
 
 

 

Now we compute contributions of  other terms         

 

     
 

 
    

         

 
 
  

       
 

 

 
 

We apply the first three terms from Taylor series (near 0) 

           
  

 
 

  

 
   

and approximate 

 
Last two terms can be simplified 

                                                
   

 
 

 

http://en.wikipedia.org/wiki/Taylor_series
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If       , then 

if Log T(m)   T(m)   
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and the final asymptotic expansion is 
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A086331 (for     is the value = 1) 

  
 
 
   

 

   

                 
 

   
  

 

 
 

    and the maximal term is at position          

 

  
 
 
   

 

   

            
   

 
         

 
   

 

  

 

   

       
 

    

 

   

           

 

 

 

A072035 - the maximal term is at position     

 
 

  
 
 
     

 

   

            
   

 
           

 
   

 

   

 

   

       
 

    

 

   

           

 

  

http://oeis.org/A086331
http://oeis.org/A072035
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A167008 

   
   

   
 
 
 
 

 

   

 

 
  

 
 

   
             

    
  

             
 
                               

 

where r = 0.70350607643066243... (A220359) is the root of the equation 

 

               

(see also A219206) 

 

We find the maximal term with the help of Stirling's approximation 

 

 
The maximal term is asymptotically at position        , where r is the root of the equation 

               
 

 

http://oeis.org/A167008
http://oeis.org/A220359
http://oeis.org/A219206
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Complication is that     is not a integer, see following graphs with distributions of residues and differences. 

 

  
 

For term near maximum and       is 

 

 
 
 
 
 

 
 

   
 
     

   

   
 
   

 
 

 
 
  

 
  

    

    
 
    

 
 

 
 
  

 
 

 

 
    

    
 
    

  
     

 
    

  

   
 

From Stirling's approximation 

 
 
  

    
 

                          
 

Together 

 
    

    
 
    

 
 

 
 
  

 
          

    

   
  

   

         
 

 

 

But for r at the maximum is 

               

and therefore for       is 
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For this function only lower and upper bound exists, not exact limit or asymptotic. 

  

 

 

But following limit exists 
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A167009 

   
 

  
 

 

   

       
    

 
 

   
 

where  

         

    

    

                  

if n is even (see A218792)  

and 

           
 
 
 
 

    

    

                    

if n is odd 

 

Proof: We find the maximal term with the help of Stirling's approximation 

 

 
      

The maximal term in the sum is at position 

      

 
 

The value at the maximum is 

 
 

http://oeis.org/A167009
http://oeis.org/A218792
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If n is even then 

   
 

  
 

 

   

    
    

 
 

   
     

   
 

 
  

  
 
    

 

 
  

  

 
 

 
    

 
 

   
       

    

    

    

    

 

 

If n is odd then 
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A167010 

  
 
 
 
 

 

   

              
    

 
 

       
 

where 

         

    

    

                  

if n is even (see A218792)  

and 

           
 
 
 
 

    

    

                    

if n is odd 

 

Proof: We find the maximal term with the help of Stirling's approximation  

 

 
      

 

The maximal term in the sum is at position 

      

 
 

From simple form of Stirling's formula we obtain main asymptotic term,  

 
but such result is not exact. For more precise asymptotic we must use in this case better approximation: 

http://oeis.org/A167010
http://oeis.org/A218792
http://en.wikipedia.org/wiki/Stirling's_approximation


12 

 

 

 
 

    
 

    
 

    
      

 
 
   

 
   

 
  

 

Same result we obtain also with Maple 

 
Now, if n is even then 

  
 
 
 
 

 

   

          
    

 
 

       
     

   
 

 
 

 
    

 

 
 

    
        

    
 
 

       
       

    

    

    

    

 

 

If n is odd then 
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A096131 - the maximal term in the sum is at position     
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http://oeis.org/A096131
http://oeis.org/A226391
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2) Binomial sums with    
 

For   
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      A001700 =  
    
   

  

      A178792 

 

Proof: If   
 

 
  then the maximal term in the sum is at position      (graphs for   

 

 
 and for    ) 
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http://oeis.org/A141223
http://oeis.org/A089022
http://oeis.org/A001700
http://oeis.org/A178792
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The maximal term in the sum is at position 

  
 

   
       (graphs for   

 

 
 and for   

 

 
 ) 

  
 

The value at the maximum is 

 
and contributions of others terms is (with the same method as on page 4) 

 
where 
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and the final asymptotic expansion for     
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Main results from my previous articles (see [2] and [3] for more): 

For              

  
 
 
 
 

 

   

       
    

 
  

      

             
  

 
 

 

 

For             is 

  
 
 
 
 

 

   

 
   

 
 
 

     
       

         
  

        

                        
 

 

where r is positive real root of the equation 
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3) Sums with Fibonacci and Lucas numbers 
 

 

A135961 - sum with Fibonacci numbers 

     
   

 

   

         
    

 
 

  

 

   
 
          

  

  
 

 
 
 

where 

          
    

 
 

       

    

                            

(A219781) if n is even  

and  

     
  

 
 

   
    

 
 

    
 
 
 
 

    

    

                            

if n is odd 
Interesting is that first 7 decimal places of both constants are same, but constants are different! 

 

Proof: 

     
   

 

   

     
   
   

 

 
       

 

 

    

   

 

 

 
 

We find the maximal term 

 

 
      

The value at the maximum is 

 
 

http://oeis.org/A135961
http://en.wikipedia.org/wiki/Fibonacci_number
http://oeis.org/A219781
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Now, if n is even then 

     
   

 

   

        
 
  

    

 
 

  

 

  
        

     

      
   

 

    

        
 
  

    

 
 

  

 

       
 

    
 
   

    

 

 

 

if n is odd then 

     
   

 

   

        
 
  

    

 
 

  

 

  
            

         

      
   

 

    

        
 
  

    

 
 

  

 

           
 

    
 

 
 
        

    

 

 

 

 

A187780 - similar result for Lucas numbers 
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if n is even  
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if n is odd 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://oeis.org/A187780
http://en.wikipedia.org/wiki/Lucas_number
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4) Miscellaneous binomial sums 
 

A219614 - sum with Stirling numbers of the second kind 

     
     

 
           

 

   

 

   
   

 
  

  
 

 
 

 
        

    
                             

 

where r = 0.410751485627... is the root of the equation  

                                
     

 
     

 

For Stirling number first and second kind (in central region!) I use following approximations (in Mathematica 

notation): 

S1asy[n_,k_]:=n!/k!*(-Log[-k/n/LambertW[-1,-k/n*Exp[-k/n]]])^k 

/(1+k/(n*LambertW[-1,-k/n*Exp[-k/n]]))^n*Sqrt[-k/(2*Pi*n^2*(LambertW[-1,-k/n 

*Exp[-k/n]]+1))]; 

 

S2asy[n_,k_]:=n!/k! * (n/k+LambertW[-n/k*Exp[-n/k]])^(k-n) / ((-LambertW[-n/k* 

Exp[-n/k]])^k * Sqrt[2*Pi*n*(1+LambertW[-n/k*Exp[-n/k]])]); 

 

 
 

 
 

http://oeis.org/A219614
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html
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Point of the maximum 

 

 
(terms for       are equal to zero) 
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Numerical verify: 
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A102743 

   
    

  

   

   

   
  

   
       

 

The maximal term is at position       

 

   
    

  

   

   

              
   

 
            

             

 

   

              

 

   

 
  

   
       

 

 

 

A220452  

         
 
 
 

 

   

               

Proof: the maximal term is at position     

 

         
 
 
 

 

   

           

            
 

    
 

   

       
               

   
 

           

               

 

   

 

 

           
   

  

 

   

                         
 
   

 
 
  

 

(according with Mathematica, (-1)!!=1) 

 

  

http://oeis.org/A102743
http://oeis.org/A220452
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New asymptotic formulas (extended 28.6.2013) 

 

 

 
 
      

 
  

 
   

    

 
 
 
 

   

     
      

 
 
  

   

  
 
 

              
 
  

  
    

 

 

 

A007317(n+1) (p=1), A049130(n+1) (p=2), A226974 (p=3), A227035 (p=4), A226910 (p=5) 
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if n is odd 
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if n is odd 
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if n is odd 

http://oeis.org/A007317
http://oeis.org/A049130
http://oeis.org/A226974
http://oeis.org/A227035
http://oeis.org/A226910
http://oeis.org/A135753
http://oeis.org/A135754
http://oeis.org/A135079
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A048163,      Stirling numbers of the second kind 
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where                        ... is the root of the equation 
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