Interesting asymptotic formulas for binomial sums

(Václav Kotěšovec, published 9.6.2013, extended 28.6.2013)

In October and November 2012 I discovered over 400 asymptotic formulas for sequences in the OEIS (On-Line Encyclopedia of Integer Sequences). Most of which are certainly new. This article is a selection of the most interesting. In addition, formulas are more readable if are published in classical mathematical format than in text format only.

Content

1) Basic binomial sums

	$f(k, n)=$ powers of k or n				
$\sum\binom{n}{k} * f(k, n)$	2^{n}	n^{k}	k^{n}	k^{k}	$k^{n} n^{k}$

$\sum\binom{n}{k}^{k}$	A 167008
$\sum\binom{n}{k}^{n}$	A 167010
$\sum\binom{k n}{k}$	A 226391
$\sum\binom{k n}{n}$	A 096131
$\sum\binom{n^{2}}{k n}$	A 167009

2) Binomial sums with x^{k}

$$
\sum\binom{n+k}{n} x^{k}
$$

(for more sums of this type see [2] and [3])
3) Sums with Fibonacci and Lucas numbers
4) Miscellaneous binomial sums

1) Basic binomial sums

OEIS - A072034

$$
\sum_{k=1}^{n}\binom{n}{k} k^{n} \sim \frac{\left(\frac{n}{e * \operatorname{LambertW}\left(\frac{1}{e}\right)}\right)^{n}}{\sqrt{1+\operatorname{LambertW}\left(\frac{1}{e}\right)}} \sim 0.88441409660870959 \ldots *(1.321099762015617457 \ldots * n)^{n}
$$

We find the maximal term with the help of Stirling's formula. The maximum is a point where the first derivative is equal to zero.

```
stirling[n_] := n^^n/E^n n*Sqrt[2*Pi*n];
binom[n_, k_] := stirling[n]/stirling[k]/stirling[n - k];
FullSimplify[D[Simplify[binom[n,r*n]* (r*n)^n],r]]
n}\frac{\mp@subsup{n}{}{\frac{3}{2}+n}(nr\mp@subsup{)}{}{-\frac{3}{2}+n-nr}(n-nr\mp@subsup{)}{}{-\frac{1}{2}+n(-1+r)}(1+2n(-1+r)-2r+2n(-1+r)r(-Log[nr]+Log[n-nr]))}{2\sqrt{}{2\pi}(-1+r)
```

$\operatorname{Limit}[((1+2 n(-1+r)-2 r+2 n(-1+r) r(-\log [n r]+\log [n-n r]))) / n, n \rightarrow \operatorname{Infinity}]$
$2(-1+r)(1+r \log [1-r]-r \log [r])$
Solve $[1+x \log [1-x]-x \log [x]=0]$
$\left\{\left\{x \rightarrow \frac{1}{1+\operatorname{ProductLog}\left[\frac{1}{\mathrm{e}}\right]}\right\}\right\}$

$$
\begin{aligned}
&\left(\text { ProductLog }=\text { LambertW) } \quad \mathrm{N}\left[\frac{1}{1+\operatorname{LambertW}\left[\frac{1}{\mathrm{e}}\right]}, 20\right]\right. \\
& 0.78218829428019990122
\end{aligned}
$$

r is the root of the equation

$$
\left(\frac{r}{1-r}\right)^{r}=e
$$

```
FindRoot[(x/(1-r) )^r == E, {r, 1/2}, WorkingPrecision }->\mathrm{ ( 50][[1]]
```

$r \rightarrow 0.78218829428019990122029707592674478018190840396630$

The maximal term in the sum is at position $r * n$, following graph is in the logarithmical scale.

The value at the maximum is

$$
\begin{aligned}
& \text { PowerExpand[FullSimplify[binom[n,r*n]*(r*n)^n/r } \left.\left.r \rightarrow \frac{1}{1+w}\right]\right] \\
& \frac{n^{-\frac{1}{2}+n} w^{-\frac{1}{2}-\frac{n w}{1+w}}(1+w)}{\sqrt{2 \pi}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{n^{n-\frac{1}{2}} *(w+1) * w^{-\frac{n w}{w+1}-\frac{1}{2}}}{\sqrt{2 \pi}}=\frac{(1+w)}{\sqrt{2 \pi n w}} *\left(\frac{n}{e w}\right)^{n} \\
r=\frac{1}{1+w}=\frac{1}{1+\operatorname{LambertW}\left(\frac{1}{e}\right)}
\end{gathered}
$$

Now we compute contributions of other terms $k=n * r \pm m$

$$
\mathrm{T}(m)=\frac{\binom{n}{n r+m} *(n r+m)^{n}}{\binom{n}{n r} *(n r)^{n}}
$$

```
lognfak[n_] := n*\operatorname{Log}[n]-n+1/2*\operatorname{Log}[n] + 1/2* Log[2*Pi] +1/(12*n);
logbinom[n_, k_]:= lognfak[n]-lognfak[k]-lognfak[n-k];
sLog[k_, n_] := Log[n] + k/n-1/2* (k/n)^2 + 1/3* (k/n)^3;
Simplify[logbinom[n,r*n+m] +n*\operatorname{Log}[r*n+m]-
    (logbinom[n,r*n] + n* Log[r*n])]
\frac{1}{12}(\frac{1}{m+n(-1+r)}+\frac{1}{nr}+\frac{1}{n-nr}-\frac{1}{m+nr}+6\operatorname{Log}[nr]-12n Log[nr]+
    12nr Log[nr] + 6 Log[n-nr] + 12(n-nr) Log[n-nr]-
    6 Log[-m+n-nr] + 12(m+n(-1+r)) Log[-m+n-nr]-
    6 Log[m+nr] + 12n Log[m+nr]-12(m+nr) Log[m+nr]
```

We apply the first three terms from Taylor series (near 0)

$$
\log (1+z)=z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\cdots
$$

and approximate

$$
\begin{aligned}
& \text { FullSimplify }[\\
& \begin{array}{l}
\frac{1}{12}\left(\frac{1}{m+n(-1+r)}+\frac{1}{n r}+\frac{1}{n-n r}-\frac{1}{m+n r}+6 \log [n r]-12 n \log [n r]+\right. \\
\quad 12 n r \log [n r]+6 \log [n-n r]+12(n-n r) \log [n-n r]- \\
\quad 6 \operatorname{sLog}[-m, n-n r]+12(m+n(-1+r)) \operatorname{sLog}[-m, n-n r]- \\
\quad \\
\quad \operatorname{sLog}[m, n r]+12 n \operatorname{sLog}[m, n r]-12(m+n r) \operatorname{sLog}[m, n r])] \\
\frac{1}{12}\left(\frac{1}{m+n(-1+r)}+\frac{1}{n^{3}}\left(\frac{2 m^{3}(-1+2 m)}{(-1+r)^{3}}+\frac{(3-2 m) m^{2} n}{(-1+r)^{2}}+\frac{6(-1+m) m n^{2}}{-1+r}-\right.\right. \\
\left.\frac{2 m^{3}(1+2 m-2 n)}{r^{3}}+\frac{m^{2}(3+2 m-6 n) n}{r^{2}}+\frac{(1-6 m(1+m-2 n)) n^{2}}{r}\right)+ \\
\\
\left.\frac{1}{n-n r}-\frac{1}{m+n r}-12 m \log [n r]+12 m \log [n-n r]\right)
\end{array}
\end{aligned}
$$

Last two terms can be simplified

$$
12 m \log (n(1-r))-12 m \log (n r)=12 m(\log (1-r)-\log (r))=\frac{12 m}{r}
$$

If $m \sim n^{\varepsilon}$, then	if	$\log \mathrm{T}(\mathrm{m}) \rightarrow$	$\mathrm{T}(\mathrm{m}) \rightarrow$
	$\varepsilon<1 / 2$	0	1
	$\varepsilon=1 / 2$	$\neq 0$	$\neq 0$
	$\varepsilon>1 / 2$	$-\infty$	0

$r=0.7821882942801999012202970759267447801819084$;
Table[
\{eps,
Limit[
$\frac{1}{12}\left(\frac{1}{m+n(-1+r)}+\frac{1}{n^{3}}\left(\frac{2 m^{3}(-1+2 m)}{(-1+r)^{3}}+\frac{(3-2 m) m^{2} n}{(-1+r)^{2}}+\frac{6(-1+m) m n^{2}}{-1+r}-\frac{2 m^{3}(1+2 m-2 n)}{r^{3}}+\frac{m^{2}(3+2 m-6 n) n}{r^{2}}+\frac{(1-6 m(1+m-2 n)) n^{2}}{r}\right)+\right.$ $\left.\frac{1}{n-n r}-\frac{1}{m+n r}-12 m / r\right) / . m \rightarrow n^{\wedge}$ eps, $n \rightarrow$ Infinity $\left.]\right\},\{$ eps, $\left.0,1.5,0.1\}\right] / /$ MatrixForm

[^0]\[

$$
\begin{aligned}
& \text { Limit }[\\
& \frac{1}{12} \\
& \left(\frac{1}{m+n(-1+r)}+\frac{1}{n^{3}}\right. \\
& \left(\frac{2 m^{3}(-1+2 m)}{(-1+r)^{3}}+\frac{(3-2 m) m^{2} n}{(-1+r)^{2}}+\frac{6(-1+m) m n^{2}}{-1+r}-\right. \\
& \left.\frac{2 m^{3}(1+2 m-2 n)}{r^{3}}+\frac{m^{2}(3+2 m-6 n) n}{r^{2}}+\frac{(1-6 m(1+m-2 n)) n^{2}}{r}\right)+ \\
& \left.\frac{1}{n-n r}-\left\lvert\, \frac{1}{m+n r}-12 m / r\right.\right) / \cdot m \rightarrow c * \operatorname{Sqrt}[n], n \rightarrow \text { Infinity] } \\
& \frac{c^{2}}{2(-1+r) r^{2}}
\end{aligned}
$$
\]

$$
\begin{gathered}
c^{2}=\frac{m^{2}}{n} \\
\sum_{k=1}^{n}\binom{n}{k} k^{n} \sim \frac{(1+w)}{\sqrt{2 \pi n w}} *\left(\frac{n}{e w}\right)^{n} * \sum_{m=-\infty}^{m=+\infty} e^{-\frac{m^{2}}{2 n(1-r) r^{2}}}
\end{gathered}
$$

But

$$
\sum_{k=-\infty}^{k=+\infty} e^{-\frac{k^{2}}{N}} \sim \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{N}} d x=\sqrt{\pi N}
$$

Here is

$$
N=2 n(1-r) r^{2}=\frac{2 n w}{(w+1)^{3}}
$$

and the final asymptotic expansion is

$$
\sum_{k=1}^{n}\binom{n}{k} k^{n} \sim \frac{(1+w)}{\sqrt{2 \pi n w}} *\left(\frac{n}{e w}\right)^{n} * \sqrt{\pi * \frac{2 n w}{(w+1)^{3}}}=\left(\frac{n}{e w}\right)^{n} * \sqrt{\frac{1}{(w+1)}}=\frac{\left(\frac{n}{e * \operatorname{LambertW}\left(\frac{1}{e}\right)}\right)^{n}}{\sqrt{1+\operatorname{LambertW}\left(\frac{1}{e}\right)}}
$$

A086331 (for $k=0$ is the value $=1$)

$$
\sum_{k=0}^{n}\binom{n}{k} k^{k} \sim e^{1 / e} * n^{n} *\left(1+\frac{1}{2 e n}\right)
$$

stirling[n_]:=n^n/E^n*Sqrt[2*Pi*n];
binom[n_, $\left.k_{-}\right]:=$stirling[$\left.n\right] /$ stirling $[k] / s t i r l i n g[n-k] ;$

FullSimplify[D[Simplify[binom[n,r*n] * (r*n) ^(r*n)], r]]

$$
\frac{n^{\frac{3}{2}+n}(n-n r)^{-\frac{1}{2}+n(-1+r)}(1+2(-1+n(-1+r)) r+2 n(-1+r) r \log [n-n r])}{2 \sqrt{2 \pi}(-1+r)(n r)^{3 / 2}}
$$

$\operatorname{Limit}[(1+2(-1+n(-1+r)) r+2 n(-1+r) r \log [n-n r]) /(n * \log [n]), n \rightarrow$ Infinity $]$ $2(-1+r) r$
$r=1$ and the maximal term is at position $k=r * n=n$

$$
\sum_{k=0}^{n}\binom{n}{k} k^{k} \sim n^{n} * \sum_{k=0}^{\infty} \lim _{n \rightarrow \infty} \frac{(n-k)^{n-k}\binom{n}{n-k}}{n^{n}}=n^{n} * \sum_{k=0}^{\infty} \frac{1}{e^{k} k!}=e^{1 / e} n^{n}
$$

A072035 - the maximal term is at position $k=n$

$$
\sum_{k=1}^{n}\binom{n}{k} k^{n} n^{k} \sim n^{2 n} * \sum_{k=0}^{\infty} \lim _{n \rightarrow \infty} \frac{n^{n-k}(n-k)^{n}\binom{n}{n-k}}{n^{2 n}}=n^{2 n} * \sum_{k=0}^{\infty} \frac{1}{e^{k} k!}=e^{1 / e} n^{2 n}
$$

A167008

$$
\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n}\binom{n}{k}^{k}\right)^{\frac{1}{n^{2}}}=\frac{1}{r^{r^{2}} *(1-r)^{r *(1-r)}}=r^{\frac{r^{2}}{1-2 r}}=(1-r)^{-\frac{r}{2}}=1.533628065110458582053143 \ldots
$$

where $\mathrm{r}=0.70350607643066243 \ldots$ (A220359) is the root of the equation

$$
(1-r)^{2 r-1}=r^{2 r}
$$

(see also A219206)
We find the maximal term with the help of Stirling's approximation

```
stirling[n_]:= n^n/E^n * Sqrt[2 * Pi * n];
binom[n_, k_] := stirling[n]/stirling[k]/stirling[n-k];
FullSimplify[D[Simplify[binom[n, k]^k], k]]
k-n}\mp@subsup{2}{}{-1-k}(\mp@subsup{k}{}{-\frac{1}{2}-k}\mp@subsup{n}{}{\frac{1}{2}+n}(-k+n\mp@subsup{)}{}{-\frac{1}{2}+k-n}\mp@subsup{)}{}{k}\mp@subsup{\pi}{}{-k
(-2 1+\frac{k}{2}}\mp@subsup{\pi}{}{k/2}(k+(k-n)(k\operatorname{Log}[k]-k\operatorname{Log}[-k+n]-\operatorname{Log}[\mp@subsup{k}{}{-\frac{1}{2}-k}\mp@subsup{n}{}{\frac{1}{2}+n}(-k+n\mp@subsup{)}{}{-\frac{1}{2}+k-n}]))
    (2\pi\mp@subsup{)}{}{k/2}(n+(-k+n)\operatorname{Log}[2\pi]))
FullSimplify[
PowerExpand [
    (-2+\frac{k}{2}}\mp@subsup{\pi}{}{k/2}(k+(k-n)(k\operatorname{Log}[k]-k\operatorname{Log}[-k+n]-\operatorname{Log}[\mp@subsup{k}{}{-\frac{1}{2}-k}\mp@subsup{n}{}{\frac{1}{2}+n}(-k+n\mp@subsup{)}{}{-\frac{1}{2}+k-n}]))
    (2\pi\mp@subsup{)}{}{k/2}(n+(-k+n)\operatorname{Log}[2\pi]))/.k->(r*n)]]
(2\pi\mp@subsup{)}{}{\frac{nr}{2}}(\textrm{n}+(\textrm{n}-\textrm{nr})\operatorname{Log}[2\pi])-
2 1+\frac{nr}{2}}\mp@subsup{\pi}{}{\frac{nr}{2}}(nr+\frac{1}{2}n(-1+r)(2n(-1+2r)\operatorname{Log}[n]+(1+4nr)\operatorname{Log}[r]+(1+2n-4nr)\operatorname{Log}[n-nr]))
```

$\operatorname{Limit}\left[\left(n r+\frac{1}{2} n(-1+r)(2 n(-1+2 r) \log [n]+(1+4 n r) \log [r]+(1+2 n-4 n r) \log [n-n r])\right) / n \wedge 2\right.$,
$\mathrm{n} \rightarrow$ Infinity]
$-(-1+r)((-1+2 r) \log [1-r]-2 r \log [r])$
FindRoot $\left[(1-r)^{\wedge}(2 r-1)=r^{\wedge}(2 r),\{x, 1 / 2\}\right.$, WorkingPrecision $\left.\rightarrow 50\right]$
$\{r \rightarrow 0.70350607643066243096929661621777095213246845742428\}$

The maximal term is asymptotically at position $k=r * n$, where r is the root of the equation

$$
(1-r)^{2 r-1}=r^{2 r}
$$

Complication is that $r * n$ is not a integer, see following graphs with distributions of residues and differences.

For term near maximum and $k=r * n$ is

$$
\begin{gathered}
\frac{\binom{n}{k}^{k}}{\binom{n}{k+1}^{k+1}}=\left(\frac{k+1}{n-k}\right)^{k+1} * \frac{1}{\binom{n}{r n}}=\left(\frac{r n+1}{n-r n}\right)^{r n+1} * \frac{1}{\binom{n}{r n}} \\
\left(\frac{r n+1}{n-r n}\right)^{r n+1} \sim \frac{e * r *\left(\frac{r}{1-r}\right)^{n r}}{1-r}
\end{gathered}
$$

From Stirling's approximation

$$
\binom{n}{r n} \sim \frac{1}{r^{n r}(1-r)^{n(1-r)} * \sqrt{2 \pi n r(1-r)}}
$$

Together

$$
\left(\frac{r n+1}{n-r n}\right)^{r n+1} * \frac{1}{\binom{n}{r n}} \sim e * r * \sqrt{\frac{2 \pi r n}{1-r}} *\left(\frac{r^{2 r}}{(1-r)^{2 r-1}}\right)^{n}
$$

But for r at the maximum is

$$
(1-r)^{2 r-1}=r^{2 r}
$$

and therefore for $k=r * n$ is

$$
\lim _{n \rightarrow \infty} \frac{\binom{n}{k}^{k}}{\binom{n}{k+1}^{k+1}} * \frac{1}{\sqrt{n}}=e * r * \sqrt{\frac{2 \pi r}{1-r}}=7.38377232346663224248764224531926185 \ldots
$$

[^1]$$
\frac{\sum_{k=0}^{n}\binom{n}{k}^{k}}{\binom{n}{r n}^{r n}}<c * n * \frac{1}{\sqrt{n}}=\mathrm{O}(\sqrt{n})
$$

For this function only lower and upper bound exists, not exact limit or asymptotic.

But following limit exists

$$
\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n}\binom{n}{k}^{k}\right)^{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty}\binom{n}{r n}^{\frac{r}{n}}=(1-r)^{(r-1) r} r^{-r^{2}}=1.533628065110458582053143 \ldots
$$

```
FullSimplify[PowerExpand[Simplify[binom[n, n*r]^(x/n)]]]
```

$n^{-(-1+r) r}(2 \pi)^{-\frac{r}{2 n}} r^{-\frac{r(1+2 n r)}{2 n}}(n-n r) \frac{\left(-\frac{1}{2}+n(-1+r)\right) r}{n}$

Limit[FullSimplify[PowerExpand[Simplify[binom[n, $\left.n * r]^{\wedge}(x / n)\right]$],$n \rightarrow$ Infinity]

$$
(1-r)^{(-1+r) r} r^{-r^{2}}
$$

Limit[FullSimplify[PowerExpand[Simplify[binom[n, $\left.n * x]^{\wedge}(x / n)\right]$], $n \rightarrow$ Infinity]/. FindRoot $\left[(1-x)^{\wedge}(2 x-1)=x^{\wedge}(2 x),\{x, 1 / 2\}\right.$, WorkingPrecision $\left.\rightarrow 50\right][$ [1]]
1.5336280651104585820531430004540738528159363029558

A167009

$$
\sum_{k=0}^{n}\binom{n^{2}}{k n} \sim c * \frac{2^{n^{2}+\frac{1}{2}}}{n \sqrt{\pi}}
$$

where

$$
c=\sum_{k=-\infty}^{k=+\infty} e^{-2 k^{2}}=1.271341522189 \ldots
$$

if n is even (see A218792)
and

$$
c=\sum_{k=-\infty}^{k=+\infty} e^{-2 *\left(k+\frac{1}{2}\right)^{2}}=1.23528676585389 \ldots
$$

if n is odd
Proof: We find the maximal term with the help of Stirling's approximation

```
stirling[n_] := n^n/E^n*Sqrt[2 * Pi * n] ;
binom[n_, k_] := stirling[n] /stirling[k]/stirling[n-k];
Simplify[D[Simplify[binom[n^2,r**n^2]],r]]
\frac{1}{2\sqrt{}{2\pi}}(\mp@subsup{n}{}{2}\mp@subsup{)}{}{\frac{5}{2}+\mp@subsup{n}{}{2}}(-\mp@subsup{n}{}{2}(-1+r)\mp@subsup{)}{}{-\frac{3}{2}+\mp@subsup{n}{}{2}(-1+r)}(\mp@subsup{n}{}{2}r\mp@subsup{)}{}{-\frac{3}{2}-\mp@subsup{n}{}{2}r}
    (-1+2r-2 n
```



```
    n}->\mathrm{ Infinity]
-2 (-1 +r)r(Log[1 - r] - Log[r])
```

$$
r=1 / 2
$$

The maximal term in the sum is at position

$$
k=n / 2
$$

The value at the maximum is

PowerExpand [Simplify[binom[n^2, $\left.n^{\wedge} 2 / 2\right]$]]

$$
\frac{2^{\frac{1^{2}+n^{2}}{n}}}{n \sqrt{\pi}}
$$

If n is even then

$$
\sum_{k=0}^{n}\binom{n^{2}}{k n} \sim \frac{2^{n^{2}+\frac{1}{2}}}{\sqrt{\pi} n} * \sum_{k=-\infty}^{k=+\infty} \lim _{n \rightarrow \infty} \frac{\binom{n^{2}}{n\left(\frac{n}{2}+k\right)}}{\binom{n^{2}}{\frac{n^{2}}{2}}}=\frac{2^{n^{2}+\frac{1}{2}}}{\sqrt{\pi} n} * \sum_{k=-\infty}^{k=+\infty} e^{-2 k^{2}}
$$

If n is odd then

$$
\sum_{k=0}^{n}\binom{n^{2}}{k n} \sim \frac{2^{n^{2}+\frac{1}{2}}}{\sqrt{\pi} n} * \sum_{k=-\infty}^{k=+\infty} \lim _{n \rightarrow \infty} \frac{\left(n\left(\frac{n}{2}+k+\frac{1}{2}\right)\right.}{\binom{n^{2}}{\frac{n^{2}}{2}}}=\frac{2^{n^{2}+\frac{1}{2}}}{\sqrt{\pi} n} * \sum_{k=-\infty}^{k=+\infty} e^{-\frac{1}{2}(2 k+1)^{2}}
$$

```
Limit[Binomial[n^2, n* (n/2 + k)]/Binomial[n^2, n^2/2], n m Infinity]
e}\mp@subsup{e}{}{-2\mp@subsup{k}{}{2}
Limit[Binomial[n^2, n* (n/2 + k +1/2)]/Binomial[n^2, n^2 / 2], n m Infinity]
e}\mp@subsup{e}{}{-\frac{1}{2}(1+2k\mp@subsup{)}{}{2}
```

A167010

$$
\sum_{k=0}^{n}\binom{n}{k}^{n} \sim c * e^{-1 / 4} * \frac{2^{n^{2}+\frac{n}{2}}}{(\pi n)^{n / 2}}
$$

where

$$
c=\sum_{k=-\infty}^{k=+\infty} e^{-2 k^{2}}=1.271341522189 \ldots
$$

if n is even (see A218792)
and

$$
c=\sum_{k=-\infty}^{k=+\infty} e^{-2 *\left(k+\frac{1}{2}\right)^{2}}=1.23528676585389 \ldots
$$

if n is odd

Proof: We find the maximal term with the help of Stirling's approximation

```
stirling[n_] := n^n n/E^n * Sqrt[2 * Pi * n];
binom[n_, k_] := stirling[n] / stirling[k]/stirling[n-k];
Simplify[D[Simplify[binom[n, r*n]^n], r]]
- 
    (-1+2r+2n(-1+r)r\operatorname{Log}[nr] - 2n(-1+r)r\operatorname{Log}[n-nr])
Limit[(-1 + 2r + 2n(-1 +r) r Log[nr] - 2n (-1 +r)r Log[n-nr]) / n, n m Infinity]
-2(-1 +r)r(Log[1-r]- Log[r])
```

$$
r=1 / 2
$$

The maximal term in the sum is at position

$$
k=n / 2
$$

From simple form of Stirling's formula we obtain main asymptotic term,
PowerExpand [Simplify[binom [n, n/2] ^n]]

$$
2^{\mathrm{n}\left(\frac{1}{2}+\mathrm{n}\right)} \mathrm{n}^{-\mathrm{n} / 2} \pi^{-\mathrm{n} / 2}
$$

but such result is not exact. For more precise asymptotic we must use in this case better approximation:

```
stirlingx[n_] := (n^n/E^n*Sqrt[2 * Pi * n] *(1 + (1/12)/n));
binomx[n_, k_] := stirlingx[n] /stirlingx[k]/stirlingx[n-k];
PowerExpand[Simplify[binomx[n, n/2]^n]]
2n(\frac{1}{2}+n)}\mp@subsup{3}{}{n}\mp@subsup{n}{}{n/2}(1+6n\mp@subsup{)}{}{-2n}(1+12n\mp@subsup{)}{}{n}\mp@subsup{\pi}{}{-n/2
Limit [( 2n (\frac{1}{2}+n)}\mp@subsup{3}{}{n}\mp@subsup{n}{}{n/2}(1+6n\mp@subsup{)}{}{-2n}(1+12n\mp@subsup{)}{}{n}\mp@subsup{\pi}{}{-n/2})/(\mp@subsup{2}{}{n(\frac{1}{2}+n)}\mp@subsup{n}{}{-n/2}\mp@subsup{\pi}{}{-n/2}),n->\mathrm{ Infinity ]
\frac{1}{\mp@subsup{e}{}{1/4}}
```

$$
\binom{n}{n / 2}^{n} \sim \frac{1}{e^{1 / 4}} * 2^{n\left(n+\frac{1}{2}\right)} n^{-\frac{n}{2}} \pi^{-\frac{n}{2}}
$$

Same result we obtain also with Maple

$$
\begin{array}{r}
\operatorname{asympt}\left(\left(\operatorname{binomial}\left(n, \frac{n}{2}\right)\right)^{n}, n, 2\right) \\
\frac{\left(\mathrm{e}^{-\frac{1}{4}}+\mathrm{O}\left(\frac{1}{n^{2}}\right)\right) 2^{n^{2}} \sqrt{2^{n}} \sqrt{\left(\frac{1}{n}\right)^{n}}}{\sqrt{\pi^{n}}}
\end{array}
$$

Now, if n is even then

$$
\left.\sum_{k=0}^{n}\binom{n}{k}^{n} \sim e^{-1 / 4} * \frac{2^{n^{2}+\frac{n}{2}}}{(\pi n)^{n / 2}} * \sum_{k=-\infty}^{k=+\infty} \lim _{n \rightarrow \infty} \frac{\left(\frac{n}{2}+k\right.}{n}\right)^{n}{\left.\begin{array}{c}
n \\
n / 2
\end{array}\right)^{n}}_{n}^{n} e^{-1 / 4} * \frac{2^{n^{2}+\frac{n}{2}}}{(\pi n)^{n / 2}} * \sum_{k=-\infty}^{k=+\infty} e^{-2 k^{2}}
$$

If n is odd then

$$
\sum_{k=0}^{n}\binom{n}{k}^{n} \sim e^{-1 / 4} * \frac{2^{n^{2}+\frac{n}{2}}}{(\pi n)^{n / 2}} * \sum_{k=-\infty}^{k=+\infty} \lim _{n \rightarrow \infty} \frac{\left(\frac{n}{2}+k+\frac{1}{2}\right)^{n}}{\binom{n}{n / 2}^{n}}=e^{-1 / 4} * \frac{2^{n^{2}+\frac{n}{2}}}{(\pi n)^{n / 2}} * \sum_{k=-\infty}^{k=+\infty} e^{-2 *\left(k+\frac{1}{2}\right)^{2}}
$$

```
Limit[Binomial[n, n/2 + k]^n/Binomial[n, n/2]^n, n m Infinity]
e}\mp@subsup{e}{}{-2\mp@subsup{k}{}{2}
Limit[Binomial[n, n/2 +k+1/2]^n/Binomial[n, n/2]^n, n m Infinity]
e
```

A096131 - the maximal term in the sum is at position $k=n$

$$
\sum_{k=0}^{n}\binom{k n}{n} \sim\binom{n^{2}}{n} * \sum_{k=0}^{\infty} \lim _{n \rightarrow \infty} \frac{\binom{(n-k) * n}{n}}{\binom{n^{2}}{n}}=\binom{n^{2}}{n} * \sum_{k=0}^{\infty} e^{-k}=\frac{e}{e-1} *\binom{n^{2}}{n}
$$

$$
\sum_{k=0}^{n}\binom{k n}{k} \sim\binom{n^{2}}{n} * \sum_{k=0}^{\infty} \lim _{n \rightarrow \infty} \frac{\binom{(n-k) * n}{n-k}}{\binom{n^{2}}{n}}=\binom{n^{2}}{n}
$$

2) Binomial sums with x^{k}

For $x>\frac{1}{2}$

$$
\sum_{k=0}^{n}\binom{n+k}{n} x^{k} \sim \frac{2 x}{2 x-1} * \frac{(4 x)^{n}}{\sqrt{\pi n}}
$$

For $x=\frac{1}{2}$

$$
\sum_{k=0}^{n}\binom{n+k}{n} x^{k}=\sum_{k=0}^{n}\binom{n+k}{n}\left(\frac{1}{2}\right)^{k}=2^{n}
$$

and for $0<x<\frac{1}{2}$

$$
\sum_{k=0}^{n}\binom{n+k}{n} x^{k} \sim \frac{1}{(1-x)^{n+1}}
$$

$x=\frac{1}{3} \quad \mathrm{~A} 141223,3^{n} \sum_{k=0}^{n}\binom{k+n}{n} \frac{1}{3^{k}}$
$x=\frac{2}{3} \quad \mathrm{~A} 089022,2^{n}\binom{2 n}{n}-3^{n-1} \sum_{k=0}^{n-1}\left(\frac{2}{3}\right)^{k}\binom{n+k}{n} \sim 6 * \frac{8^{n}}{\sqrt{\pi} n^{3 / 2}}$
$x=1 \quad \mathrm{~A} 001700=\binom{2 n+1}{n+1}$
$x=2$ A178792
Proof: If $x>\frac{1}{2}$ then the maximal term in the sum is at position $k=n$ (graphs for $x=\frac{2}{3}$ and for $x=2$)

$$
\sum_{k=0}^{n}\binom{n+k}{n} x^{k} \sim\binom{2 n}{n} x^{n} * \sum_{k=0}^{\infty} \lim _{n \rightarrow \infty} \frac{\binom{2 n-k}{n} x^{n-k}}{\binom{2 n}{n} x^{n}}=\binom{2 n}{n} x^{n} * \sum_{k=0}^{\infty} \frac{1}{(2 x)^{k}}=\frac{2 x}{2 x-1} * \frac{(4 x)^{n}}{\sqrt{\pi n}}
$$

Case $0<x<\frac{1}{2}$

```
stirling[n_] := n^n/E^n*Sqrt[2*Pi*n];
binom[n_, k_] := stirling[n]/stirling[k]/stirling[n-k];
FullSimplify[D[Simplify[binom[n+r*n,n]*x^(r*n)],r]]
\frac{1}{2\sqrt{}{2\pi}}\mp@subsup{n}{}{\frac{3}{2}-n}(nr\mp@subsup{)}{}{-\frac{3}{2}-nr}(n(1+r)\mp@subsup{)}{}{-\frac{1}{2}+n+nr}\mp@subsup{\textrm{x}}{}{nr}
    (-1+2nr(1+r)(-Log[nr] + Log[n(1+r)]+\operatorname{Log}[x]))
Limit[FullSimplify[PowerExpand[(-1 + 2nr(1+r)(-Log[n r] + Log[n (1 +r)] + Log[x]))]]/
    n, n }->\mathrm{ Infinity]
    -2r(1 + r) ( Log[r] - Log[1 + r] - Log[x])
Solve[Log[x]-\operatorname{Log}[1 + r] - Log[x] == 0, r]
{{r->-\frac{x}{-1+x}}}
```

The maximal term in the sum is at position

$$
k=\frac{x}{1-x} * n \quad\left(\text { graphs for } x=\frac{1}{3} \text { and for } x=\frac{1}{2}\right)
$$

The value at the maximum is

$$
\begin{aligned}
& \text { Assuming }[\{x>0, x<1 / 2\}, \\
& \text { FullSimplify } \left.\left[\text { PowerExpand }\left[\text { binom }[n+r * n, n] * x^{\wedge}(x * n) / x \rightarrow \frac{x}{1-x}\right]\right]\right] \\
& \frac{(1-x)^{-n}}{\sqrt{2 \pi} \sqrt{n x}}
\end{aligned}
$$

and contributions of others terms is (with the same method as on page 4)

$$
\begin{aligned}
& \text { Assuming }[\{x>0, x<1 / 2\}, \\
& \text { Limit }\left[\text { binom }[n+x * n+m, n] * x^{\wedge}(x * n+m) /\left(\text { binom }[n+x * n, n] * x^{\wedge}(x * n)\right) / .\right. \\
& \left.\left.\quad x \rightarrow \frac{x}{1-x} / \cdot\{m \rightarrow c * \operatorname{Sqrt}[n]\}, n \rightarrow \text { Infinity }\right]\right] \\
& e^{-\frac{c^{2}(-1+x)^{2}}{2 x}}
\end{aligned}
$$

where

$$
\begin{gathered}
c^{2}=\frac{m^{2}}{n} \\
\sum_{k=0}^{n}\binom{n+k}{n} x^{k} \sim \frac{1}{(1-x)^{n} * \sqrt{2 \pi n x}} * \sum_{m=-\infty}^{m=+\infty} e^{-\frac{m^{2}(1-x)^{2}}{2 n x}}
\end{gathered}
$$

But

$$
\sum_{k=-\infty}^{k=+\infty} e^{-\frac{k^{2}}{N}} \sim \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{N}} d x=\sqrt{\pi N}
$$

Here is

$$
N=\frac{2 n x}{(1-x)^{2}}
$$

and the final asymptotic expansion for $0<x<\frac{1}{2}$ is

$$
\sum_{k=0}^{n}\binom{n+k}{n} x^{k} \sim \frac{1}{(1-x)^{n} * \sqrt{2 \pi n x}} * \sqrt{\frac{2 \pi n x}{(1-x)^{2}}}=\frac{1}{(1-x)^{n+1}}
$$

Main results from my previous articles (see [2] and [3] for more):
For $p \geq 1, x>0, n \rightarrow \infty$

$$
\sum_{k=0}^{n}\binom{n}{k}^{p} x^{k} \sim \frac{\left(1+x^{\frac{1}{p}}\right)^{p n+p-1}}{\sqrt{(2 \pi n)^{p-1} * p * x^{1-\frac{1}{p}}}}
$$

For $p>0, q \geq 0, n \rightarrow \infty$ is

$$
\sum_{k=0}^{n}\binom{n}{k}^{p}\binom{n+k}{k}^{q} \sim \frac{(1+r)^{q n}}{(1-r)^{p n+p}} * \sqrt{\frac{r\left(1-r^{2}\right)}{(p+q+(p-q) r) *(2 \pi n)^{p+q-1}}}
$$

where r is positive real root of the equation

$$
(1-r)^{p} *(1+r)^{q}=r^{p+q}
$$

Especially for $p=q>0$

$$
\sum_{k=0}^{n}\binom{n}{k}^{p}\binom{n+k}{k}^{p} \sim \frac{(1+\sqrt{2})^{p(2 n+1)}}{2^{p / 2+3 / 4} *(\pi n)^{p-1 / 2} * \sqrt{p}}
$$

and for $p=2 q>0$

$$
\sum_{k=0}^{n}\binom{n}{k}^{2 q}\binom{n+k}{k}^{q} \sim \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{q(5 n+4)-3 / 2}}{5^{1 / 4} * \sqrt{q(2 \pi n)^{3 q-1}}}
$$

For $p=0, q>0, n \rightarrow \infty$ is

$$
\sum_{k=0}^{n}\binom{n+k}{k}^{q} \sim \frac{2^{(2 n+1) * q}}{\left(2^{q}-1\right) *(\pi n)^{q / 2}}
$$

3) Sums with Fibonacci and Lucas numbers

A135961 - sum with Fibonacci numbers

$$
\sum_{k=0}^{n}\left(F_{k}\right)^{n-k} \sim c *\left(\frac{1+\sqrt{5}}{2}\right)^{\frac{n^{2}}{4}} * 5^{-\frac{n}{4}} \sim c *\left(\frac{F_{n}}{\sqrt{5}}\right)^{\frac{n}{4}}
$$

where

$$
c=\sum_{k=-\infty}^{k=+\infty} 5^{k / 2} *\left(\frac{1+\sqrt{5}}{2}\right)^{-k^{2}}=3.5769727481316948565395 \ldots
$$

(A219781) if n is even
and

$$
c=\sum_{k=-\infty}^{k=+\infty} 5^{\frac{k+\frac{1}{2}}{2}} *\left(\frac{1+\sqrt{5}}{2}\right)^{-\left(k+\frac{1}{2}\right)^{2}}=3.5769727390073366345992 \ldots
$$

if n is odd
Interesting is that first 7 decimal places of both constants are same, but constants are different!
Proof:

$$
\sum_{k=0}^{n}\left(F_{k}\right)^{n-k} \sim \sum_{k=0}^{n} 5^{\frac{k-n}{2}}\left(\left(\frac{1}{2}(1+\sqrt{5})\right)^{k}\right)^{n-k}
$$

We find the maximal term

$$
\begin{aligned}
& \text { Simplify[D[(1/Sqrt[5] * ((1 + Sqrt[5])/2)^(r*n) ^^(n-r*n), r]] } \\
& -\frac{1}{2} 5^{\frac{1}{2} n(-1+x)}\left(\left(\frac{1}{2}(1+\sqrt{5})\right)^{n \mathrm{n}}\right)^{\mathrm{n}-\mathrm{n} \mathrm{r}} \mathrm{n}\left(-\log [5]+2 \log \left[\left(\frac{1}{2}(1+\sqrt{5})\right)^{\mathrm{nr}}\right]+2 \mathrm{n}(-1+\mathrm{r}) \log \left[\frac{1}{2}(1+\sqrt{5})\right]\right) \\
& \text { Simplify }\left[\operatorname{PowerExpand}\left[\left(2 \log \left[\left(\frac{1}{2}(1+\sqrt{5})\right)^{\mathrm{nr}}\right]+2 n(-1+x) \log \left[\frac{1}{2}(1+\sqrt{5})\right]\right) / n\right]\right] \\
& -2(-1+2 r) \log \left[\frac{2}{1+\sqrt{5}}\right]
\end{aligned}
$$

$$
r=1 / 2
$$

The value at the maximum is

$$
\begin{aligned}
& \text { PowerExpand [Simplify [(1/Sqrt[5]*((1+Sqrt[5])/2)^(r*n))^(n-r*n)/.r } \rightarrow 1 / 2]] \\
& 5^{-\frac{n}{4}}\left(\frac{1}{2}(1+\sqrt{5})\right)^{\frac{n^{2}}{4}}
\end{aligned}
$$

Now, if n is even then

$$
\sum_{k=0}^{n}\left(F_{k}\right)^{n-k} \sim 5^{-\frac{n}{4}}\left(\frac{1+\sqrt{5}}{2}\right)^{\frac{n^{2}}{4}} * \sum_{k=-\infty}^{\infty} \frac{\left(F_{n / 2+k}\right)^{n / 2-k}}{\left(F_{n / 2}\right)^{n / 2}} \sim 5^{-\frac{n}{4}}\left(\frac{1+\sqrt{5}}{2}\right)^{\frac{n^{2}}{4}} * \sum_{k=-\infty}^{\infty} 5^{k / 2}\left(\frac{2}{1+\sqrt{5}}\right)^{k^{2}}
$$

if n is odd then

$$
\sum_{k=0}^{n}\left(F_{k}\right)^{n-k} \sim 5^{-\frac{n}{4}}\left(\frac{1+\sqrt{5}}{2}\right)^{\frac{n^{2}}{4}} * \sum_{k=-\infty}^{\infty} \frac{\left(F_{n / 2+k+1 / 2}\right)^{n / 2-k-1 / 2}}{\left(F_{n / 2}\right)^{n / 2}} \sim 5^{-\frac{n}{4}}\left(\frac{1+\sqrt{5}}{2}\right)^{\frac{n^{2}}{4}} * \sum_{k=-\infty}^{\infty} 5^{k / 2+1 / 4}\left(\frac{2}{1+\sqrt{5}}\right)^{\frac{1}{4}(2 k+1)^{2}}
$$

A187780 - similar result for Lucas numbers

$$
\sum_{k=0}^{n}\left(L_{k}\right)^{n-k} \sim c *\left(\frac{1+\sqrt{5}}{2}\right)^{\frac{n^{2}}{4}} \sim c *\left(L_{n}\right)^{n / 4}
$$

where

$$
c=\sum_{k=-\infty}^{k=+\infty}\left(\frac{1+\sqrt{5}}{2}\right)^{-k^{2}}=2.555093469444518777230568 \ldots
$$

if n is even
and

$$
c=\sum_{k=-\infty}^{k=+\infty}\left(\frac{1+\sqrt{5}}{2}\right)^{-\left(k+\frac{1}{2}\right)^{2}}=2.555093456793304790966994 \ldots
$$

if n is odd

4) Miscellaneous binomial sums

A219614 - sum with Stirling numbers of the second kind

$$
\begin{gathered}
a_{n}=\sum_{k=0}^{n}\binom{n-k+1}{k} k!* S_{2}(n, k) \\
\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{n!}\right)^{\frac{1}{n}}=\frac{3 r^{2}-3 r+1}{1-2 r}=1.53445630931668421506236 \ldots
\end{gathered}
$$

where $\mathrm{r}=0.410751485627 \ldots$ is the root of the equation

$$
(1-2 r)^{2}+r *\left(1-3 r+3 r^{2}\right) * \text { LambertW }\left(-\frac{e^{-1 / r}}{r}\right)=0
$$

For Stirling number first and second kind (in central region!) I use following approximations (in Mathematica notation):

```
S1asy[n_,k_]:=n!/k!*(-Log[-k/n/LambertW[-1,-k/n*Exp[-k/n]]])^k
/(1+k/(\overline{n}*LambertW[-1,-k/n*Exp[-k/n]]))^n*Sqrt[-k/(2*Pi*n^2*(LambertW[-1,-k/n
*Exp[-k/n]]+1))];
```

S2asy[n_k_]:=n!/k! * (n/k+LambertW[-n/k*Exp[-n/k]])^(k-n) / ((-LambertW[-n/k*
$\operatorname{Exp}[-\mathrm{n} / \overline{\mathrm{k}}] \mathrm{f})^{\wedge} \mathrm{k} * \operatorname{Sqrt}\left[2 * \mathrm{Pi}_{\mathrm{n}} \mathrm{n}^{*}(1+\right.$ LambertW[-n/k*Exp$\left.\left.\left.[-\mathrm{n} / \mathrm{k}]]\right)\right]\right) ;$

FullSimplify [D[binom $[\mathrm{n}-\mathrm{r} * \mathrm{n}+1, \mathrm{r} * \mathrm{n}] \star$ S2asy $[\mathrm{n}, \mathrm{r} * \mathrm{n}] \star(\mathrm{r} * \mathrm{n})!, r]]$
$n(n r)^{-\frac{1}{2}-n r}(1+n-2 n r)^{-\frac{3}{2}+n(-1+2 r)}(1+n-n r)^{\frac{3}{2}+n-n r} n!\left(- \text { ProductLog }\left[-\frac{e^{-1 / r}}{r}\right]\right)^{-n r}\left(\frac{1}{r}+\text { ProductLog }\left[-\frac{e^{-1 / r}}{r}\right]\right)^{n(-1+r)}$
$\left(n\left(\frac{1}{-1+n(-1+r)}+\frac{2}{1+n-2 n r}\right)-2 n\left(\log [n r]-2 \log [1+n-2 n r]+\log [1+n-n r]+\log \left[-\operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right]-\log \left[\frac{1}{r}+\operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right]\right)+\right.$ $\left(-\frac{1}{r}+n\left(\frac{1}{-1+n(-1+r)}+\frac{2}{1+n-2 n r}\right)-2 n\left(\log [n r]-2 \log [1+n-2 n r]+\log [1+n-n r]+\log \left[-\operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right]-\right.\right.$ $\left.\left.\log \left[\frac{1}{r}+\operatorname{ProductLog}\left[-\frac{\mathrm{e}^{-1 / \mathrm{r}}}{\mathrm{r}}\right]\right]\right)\right)$ ProductLog $\left.\left.\left[-\frac{\mathrm{e}^{-1 / \mathrm{r}}}{\mathrm{r}}\right]+\frac{\left.-1+\frac{1-\mathrm{r}}{1+\text { ProductLog }\left[-\frac{\mathrm{e}^{-1 / r}}{\mathrm{r}}\right.}\right]}{\mathrm{r}^{2}}\right)\right) /\left(4 \pi\left(\mathrm{n}\left(1+\operatorname{ProductLog}\left[-\frac{\mathrm{e}^{-1 / \mathrm{s}}}{\mathrm{r}}\right]\right)\right)^{3 / 2}\right)$

Limit [

$$
\begin{aligned}
& \left(n\left(\frac{1}{-1+n(-1+r)}+\frac{2}{1+n-2 n r}\right)-2 n\left(\log [n r]-2 \log [1+n-2 n r]+\log [1+n-n r]+\log \left[-\operatorname{Product} \log \left[-\frac{e^{-1 / r}}{r}\right]\right]-\log \left[\frac{1}{r}+\operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right]\right)+\right. \\
& \left(-\frac{1}{r}+n\left(\frac{1}{-1+n(-1+r)}+\frac{2}{1+n-2 n r}\right)-\right. \\
& \left.2 n\left(\log [n r]-2 \log [1+n-2 n r]+\log [1+n-n r]+\log \left[-\operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right]-\log \left[\frac{1}{r}+\operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right]\right)\right) \text { ProductLog }\left[-\frac{e^{-1 / r}}{r}\right]+ \\
& \left.\left.\frac{-1+\frac{1-\tau}{1 .+ \text { Prodact } \operatorname{tog}\left[-\frac{e^{-1 / \tau}}{\tau}\right]}}{\mathrm{r}^{2}}\right) / \mathrm{n}, \mathrm{n} \rightarrow \text { Infinity }\right] \\
& 2\left(2 \log [1-2 r]-\log [1-r]-\log [r]-\log \left[-\operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right]+\log \left[\frac{1}{r}+\operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right]\right)\left(1+\operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right)
\end{aligned}
$$

```
FindRoot[2 Log[1-2 r]-\operatorname{Log}[1-r] - Log[r] - Log[-ProductLog [-\frac{\mp@subsup{e}{}{-1/r}}{r}]]+\operatorname{Log}[\frac{1}{r}+\operatorname{ProductLog}[-\frac{\mp@subsup{e}{}{-1/r}}{r}]]=0,
    {x, 0.3}, WorkingPrecision }->\mathrm{ 50]
{r >0.41075148562708624194639923018891139764505759339773}
```


Point of the maximum

(terms for $k>n / 2$ are equal to zero)

```
\(\operatorname{Limit}\left[\left(\left(e^{-1} n^{\frac{1}{2 n}+1}(n r)^{-\frac{1}{2 n-r}}(1+n-2 n r)^{-\frac{3}{2 n}+(-1+2 r)}(1+n-n r)^{\frac{3}{2 n}+1-r}\left(-\operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right)^{-r}\left(\frac{1}{r}+\operatorname{ProductLog}\left[-\frac{e^{-1 / \tau}}{r}\right]\right)^{(-1+\tau)}\right)\right) /(n / E)\right)\),
    \(\mathrm{n} \rightarrow\) Infinity \(]\)
\(\left((1-2 r)^{-1+2 r}(-(-1+r) r)^{1-r}\left(-\operatorname{ProductLog}\left[-\frac{e^{-1 / x}}{r}\right]\right)^{-r}\left(\frac{1}{r}+\operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right)^{r}\right) /\left(1+r \operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right)\)
\(N\left[\left((1-2 r)^{-1+2 r}(-(-1+r) r)^{1-r}\left(-\operatorname{ProductLog}\left[-\frac{e^{-1 / \tau}}{r}\right]\right)^{-r}\left(\frac{1}{r}+\operatorname{ProductLog}\left[-\frac{e^{-1 / r}}{r}\right]\right)^{r}\right) /\left(1+r \operatorname{ProductLog}\left[-\frac{e^{-1 / \tau}}{r}\right]\right) /\right.\).
    \(r \rightarrow 0.41075148562708624194639923,20]\)
```


1.5344563093166842151

```
PowerExpand [
```



```
    (1+r* ((1-2*r)^2/(-r* (1-3*r+3* r^2))))]]
(1-2r) -1+2rr r-r}(1+3(-1+r)r\mp@subsup{)}{}{1-r}(\frac{1}{r}+\frac{-1+r}{1+3(-1+r)r}\mp@subsup{)}{}{-r
```

```
(3*r^2-3*r+1)/(1-2*r)/.
FindRoot[(1-2*r)^ 2 +r* (1-3*r+3*r^2) * LambertW [-E^ (-1/r)/r] = 0,
    {r, 1/2}, WorkingPrecision }->\mathrm{ 50]
1.534456309316684215062360001020693306695135011957
```

Numerical verify:

```
Show[
    ListPlot[
    ParallelTable[(Sum[Binomial[n-k+1, k]*StirlingS2[n, k] k!, {k, 0, n}]/n!)^(1/n)
        {n, 1, 1000}], PlotRange }->{1.3,1.55}]
Plot[(3*r^2-3*r+1)/(1-2*r) /.
    FindRoot[(1-2*r)^2 +r*(1-3*r + 3*r^^2) * LambertW[-E^(-1/r)/r]=0,
            {r, 1/2}, WorkingPrecision }->\mathrm{ 100], {n, 1, 1000}, PlotStyle }->\mathrm{ Red],
    PlotRange }->\mathrm{ {1.2, 1.55}]
```


A102743

$$
n!\sum_{k=1}^{n+1} \frac{k^{k-1}}{k!} \sim \frac{e^{2}}{e-1} * n^{n-1}
$$

The maximal term is at position $k=n+1$

$$
n!\sum_{k=1}^{n+1} \frac{k^{k-1}}{k!} \sim n^{n-1} * \sum_{k=0}^{\infty} \lim _{n \rightarrow \infty} \frac{n!(n+1-k)^{n-k}}{n^{n-1} *(n+1-k)!}=n^{n-1} * \sum_{k=0}^{\infty} e^{1-k}=\frac{e^{2}}{e-1} * n^{n-1}
$$

A220452

$$
\sum_{k=1}^{n}(2 k-3)!!\binom{n}{k} \sim(2 n-3)!!* \sqrt{e}
$$

Proof: the maximal term is at position $k=n$

$$
\begin{aligned}
\sum_{k=1}^{n}(2 k-3)!!\binom{n}{k} \sim(2 n-3)!!* & \frac{\sum_{j=0}^{\infty}(2 n-2 j-3)!!\binom{n}{n-j}}{(2 n-3)!!} \sim(2 n-3)!!* \sum_{j=0}^{\infty} \lim _{n \rightarrow \infty} \frac{2^{-j}(1-2 n) \sqrt{n}}{j!(2 j-2 n+1) \sqrt{n-j}} \\
& \sim(2 n-3)!!* \sum_{j=0}^{\infty} \frac{2^{-j}}{j!} \sim(2 n-3)!!* \sqrt{e} \sim n^{n-1} * 2^{n-\frac{1}{2}} * e^{\frac{1}{2}-n}
\end{aligned}
$$

(according with Mathematica, (-1)!!=1)

New asymptotic formulas (extended 28.6.2013)

$$
\sum_{k=0}^{\left\lfloor\frac{n}{p}\right\rfloor} \frac{\binom{(p+1) k}{k}\binom{n}{p k}}{p k+1} \sim \frac{\left((p+1)^{\frac{1}{p}+1}+p\right)^{n+\frac{3}{2}}}{\sqrt{2 \pi} n^{3 / 2}(p+1)^{\frac{3}{2 p}+1} p^{n+1}}
$$

$$
\operatorname{A} 007317(\mathrm{n}+1)(\mathrm{p}=1), \operatorname{A} 049130(\mathrm{n}+1)(\mathrm{p}=2), \mathrm{A} 226974(\mathrm{p}=3), \mathrm{A} 227035(\mathrm{p}=4), \mathrm{A} 226910(\mathrm{p}=5)
$$

A135753

$$
\sum_{k=0}^{n}\binom{n}{k}\left(\frac{3^{k}-1}{2}\right)^{n-k} \sim c * \frac{3^{\frac{n^{2}}{4}} 2^{\frac{n+1}{2}}}{\sqrt{\pi n}}
$$

where

$$
c=\sum_{k=-\infty}^{\infty} 2^{k} 3^{-k^{2}}=1.8862156350800186 \ldots
$$

if n is even and

$$
c=\sum_{k=-\infty}^{\infty} 2^{k+\frac{1}{2}} 3^{-\left(k+\frac{1}{2}\right)^{2}}=1.8865940733664341 \ldots
$$

if n is odd

A135754

$$
\sum_{k=0}^{n}\binom{n}{k}\left(\frac{4^{k}-1}{3}\right)^{n-k} \sim c * \frac{2^{\frac{n^{2}}{2}+n+\frac{1}{2}}}{3^{n / 2} \sqrt{\pi n}}
$$

where

$$
c=\sum_{k=-\infty}^{\infty} 3^{k} 4^{-k^{2}}=1.86902676808473931 \ldots
$$

if n is even and

$$
c=\sum_{k=-\infty}^{\infty} 3^{k+\frac{1}{2}} 4^{-\left(k+\frac{1}{2}\right)^{2}}=1.87384213421283135 \ldots
$$

if n is odd

A135079

$$
\sum_{k=0}^{n}\binom{n}{k} 3^{k(n-k)} \sim c * \frac{3^{\frac{n^{2}}{4}} 2^{n+\frac{1}{2}}}{\sqrt{\pi n}}
$$

where

$$
c=\sum_{k=-\infty}^{\infty} 3^{-k^{2}}=1.6914596816817 \ldots
$$

if n is even and

$$
c=\sum_{k=-\infty}^{\infty} 3^{-\left(k+\frac{1}{2}\right)^{2}}=1.69061120307521 \ldots
$$

if n is odd

A048163, $S_{2}=$ Stirling numbers of the second kind

$$
\begin{gathered}
a_{n}=\sum_{k=1}^{n}((k-1)!)^{2} *\left(S_{2}(n, k)\right)^{2} \\
\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{n!}\right)^{\frac{1}{n}}=\frac{1}{e \log ^{2}(2)}=0.7656928576 \ldots
\end{gathered}
$$

A122399

$$
\begin{gathered}
a_{n}=\sum_{k=0}^{n} k!k^{n} * S_{2}(n, k) \\
\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{n!}\right)^{\frac{1}{n}}=\frac{\left(e^{1 / r}+1\right) r^{2}}{e}=1.162899527477400818845 \ldots
\end{gathered}
$$

where $r=0.87370243323966833 \ldots$ is the root of the equation

$$
\frac{1}{e^{-1 / r}+1}=-r \text { LambertW }\left(-\frac{e^{-1 / r}}{r}\right)
$$

References:

[1] OEIS - The On-Line Encyclopedia of Integer Sequences
[2] Kotěšovec V., Asymptotic of a sums of powers of binomial coefficients * $x^{\wedge} k$, website 20.9.2012
[3] Kotěšovec V., Asymptotic of generalized Apéry sequences with powers of binomial coefficients, website 4.11.2012
[4] Special programs under Mathematica by Václav Kotěšovec (2012): function "plinrec" search in the integer sequences linear recurrences with polynomial coefficients, functions "verifyrecGFasympt", "verifyrecEGFasympt", "verifyrecSUMasympt" check asymptotic expansions, recurrences and generating functions numerically.
[5] Jet Wimp and Doron Zeilberger, Resurrecting the Asymptotics of Linear Recurrences, Journal of Mathematical Analysis and Applications 111, 1985, p.174-175, method Birkhoff -Trjitzinsky (1932)
[6] Maple package AsyRec by Doron Zeilberger (2008-2009)
[7] Maple module Algolib, with function "equivalent" by Bruno Salvy (2010)
[8] Mathematica package Asymptotics.m by Manuel Kauers (2011)
[9] Graham R. L., Knuth D. E. and Patashnik O., Concrete Mathematics: A Foundation for Computer Science, 2nd edition, 1994
[10] Kotěšovec V., Too many errors around coefficient C_{1} in asymptotic of sequence A002720 - I found bug in program Mathematica!, website 28.9.2012

[^0]: $\left(\begin{array}{ll}0 . & 0 . \\ 0.1 & 0 . \\ 0.2 & 0 . \\ 0.3 & 0 . \\ 0.4 & 0 . \\ 0.5 & -3.752 \\ 0.6 & -\infty \\ 0.7 & -\infty \\ 0.8 & -\infty \\ 0.9 & -\infty \\ 1 . & -\infty \\ 1.1 & -\infty \\ 1.2 & -\infty \\ 1.3 & -\infty \\ 1.4 & -\infty \\ 1.5 & -\infty\end{array}\right.$

[^1]: Limit[FullSimplify[Binomial[n, k]^k/Binomial[n, k+1]^(k+1)/.k \rightarrow r*n]/Sqrt[n]/.

