Too many errors around coefficient $\mathbf{C}_{\mathbf{1}}$ in asymptotic of sequence $\mathbf{A} 002720$

(Václav Kotěšovec, 28.9.2012)
Main result: I found bug in program Mathematica!
Sequence A002720 in OEIS is number of $n \times n$ binary matrices with at most one 1 in each row and column or number of non-attacking placements of k rooks on an $n \times n$ board, summed over all $k>=0$ (see [2], p.212).
Formula is simple

$$
a_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2} k!
$$

Values of this sequence are also special case of Laguerre polynomials

$$
a_{n}=n!* \operatorname{LaguerreL}(n,-1)
$$

Right asymptotic expansion is

$$
a_{n} \sim \frac{n^{n+\frac{1}{4}}}{\sqrt{2} e^{n-2 \sqrt{n}+\frac{1}{2}}} *\left(1+\frac{31}{48 \sqrt{n}}+\frac{553}{4608 n}-\frac{222853}{3317760 n \sqrt{n}}+\frac{9164693}{637009920 n^{2}}+\cdots\right)
$$

Therefore

$$
\lim _{n \rightarrow \infty}\left(a_{n} * \frac{\sqrt{2} e^{n-2 \sqrt{n}+\frac{1}{2}}}{n^{n+\frac{1}{4}}}-1\right) * \sqrt{n}=\frac{31}{48}
$$

In program Mathematica
Limit [$n!$ *LaguerreL $\left.\left.[n,-1] / n^{\wedge}(n+1 / 4) * \operatorname{Sqrt}[2] * E^{\wedge}(n-2 * \operatorname{Sqrt}[n]+1 / 2)-1\right) * \operatorname{Sqrt}[n], n->I n f i n i t y\right]$
But Mathematica wrong output (in versions 7 and 8) is 13/16

```
In[1]:= Limit[
    (n!* LaguerreL[n, -1]/n^(n+1/4) * Sqrt[2] *
        E^ (n-2*Sqrt[n] + 1/2)-1) * Sqrt[n],
    n}->\mathrm{ Infinity]
```

Out[1] $=\frac{13}{16}$

This is BUG !!!

But this is not all. Try same computing numerically, for example

```
N[Table[ (n! *LaguerreL[n,-1]/n^ (n+1/4)*Sqrt[2]*E^(n-2*Sqrt[n] +1/2) -1) *Sqrt[n], {n,1000,10000,1000 } ], 20]
```

Or, with more terms and better precision (elapsed time was ~ 1 hour):

```
N[
    Table[
        (n!* LaguerreL[n, -1]/n^(n+1/4) * Sqrt[2] *
        E^ (n-2*Sqrt[n] + 1/2)-1) * Sqrt[n],
    {n,1000000, 10000000, 1000|000}], 20]
{0.64595327485857865704, 0.64591815870538845793,
0.64590259799022250717, 0.64589332088298149047,
0.64588698941420000820, 0.64588231547803760347,
0.64587868275613942973, 0.64587575441366589107,
0.64587332876408306831, 0.64587127669377150813}
This is right !
\(31 / 48=0.645833\)
\(13 / 16=0.8125\)
```

Also with original sum are numerical results same (only computation with LaguerreL is faster)

```
N[
    Table[
    (Sum[Binomial[n, k]^2*k!, {k, 0, n}]/n^^(n+1/4)*
        Sqrt[2] *E^ (n-2*Sqrt[n] + 1/2) - 1) * Sqrt[n],
    {n,10000, 100000, 10000}], 20]
{0.64702671774976334684, 0.64667856950124587690,
0.64652396757356475342, 0.64643169930381838307,
0.64636868636887773360, 0.64632214820918880927,
0.64628596472380561470, 0.64625678910987046302,
0.64623261647360573316, 0.64621216286263130538}
```

Similar numerical results produced also program Maple (unfortunately symbolic evaluation is not possible)

```
> for iter from 100000 by 100000 to 200000 do
    lag := seq(simplify(n!\cdotLaguerreL(n, 0,-1),'LaguerreL'), n= iter ..iter) :
    den := eval( (n^}(n+1/4)/\operatorname{sqrt(2)/exp(n-2*\operatorname{sqrt}}(n)+1/2),n=iter)
    print(evalf[50]((\frac{lag}{den}-1)\cdotsqrt(iter)));od:
    0.64621216286263130537635272179788850602652001497785
    0.64610134521370374206073116052270670423741616765194
```

and following output is from program Maxima (only $\mathrm{n}=100$ is possible)

```
\nabla(%i1) l(n):=(n!*gen_laguerre(n, 0, -1)/(n^(n+1/4)/sqrt (2)/exp(n-2*sqrt (n)+1/2))-1)*sqrt (n);
ev(l(100),numer);
(%०1) l(n):=(\frac{n!\mp@subsup{L}{n}{(0)}(-1)}{\frac{n+\frac{1}{4}}{\frac{n}{\sqrt{}{2}}}}\frac{\sqrt{}{\operatorname{exp}(n-2\sqrt{}{n}+\frac{1}{2})}}{)})\sqrt{}{n}
(%०2) 0.6571787769841
```

Under Mathematica I tested function Hypergeometric1F1 yet, because

$$
\text { Hypergeometric1F1 }(-n, 1,-1)=\operatorname{LaguerreL}(n,-1)
$$

but results are same (probably same way in program):

```
Limit[
    (n!* Hypergeometric1F1[-n, 1, -1]/n^ (n+1/4)*
        Sqrt[2]*E^ (n-2*Sqrt[n] + 1/2) - 1) * Sqrt[n],
    n}->\mathrm{ Infinity]
\frac{13}{16}
```

N [
Table [
($n!$ * Hypergeometric1F1[-n, 1, -1$] / n \wedge(n+1 / 4) *$
$\left.\operatorname{Sqrt}[2] * E^{\wedge}(n-2 * \operatorname{Sqrt}[n]+1 / 2)-1\right) * \operatorname{Sqrt}[n]$,
\{n, 1000000, 10000000,1000000$\}], 20]$
$\{0.64595327485857865704,0.64591815870538845793$
$0.64590259799022250717,0.64589332088298149047$
$0.64588698941420000820,0.64588231547803760347$,
$0.64587868275613942973,0.64587575441366589107$
$0.64587332876408306831,0.64587127669377150813\}$

Now is time for historical note. Main term in the asymptotic expansion found Oskar Perron in 1921, see [3].

$$
\Phi(\beta+n, \gamma ; x)=\frac{\Gamma(\gamma)}{2 \sqrt{\pi}} e^{\frac{1}{2} x}(x n)^{\frac{1}{4}-\frac{\gamma}{2}} e^{2 \gamma \overline{x n}} \cdot\left[1+O\left(\frac{1}{\sqrt{n}}\right)\right]
$$

In 1985 W . Van Assche published more detailed asymptotic expansion for Laguerre polynomials, but with wrong term $\mathrm{C}_{\mathbf{1}}$ (see [4]) and in 2001 the same author published correction (see [5]) with right term $\mathbf{C}_{\mathbf{1}}$

$$
\begin{gathered}
L_{n}^{(-a)}(-z)=\frac{e^{-z / 2}}{2 \sqrt{\pi}} \frac{e^{2 \sqrt{n z}}}{z^{1 / 4-a / 2} n^{1 / 4+a / 2}} \cdot\left(1+\left(\frac{3-12 a^{2}+24(1-a) z+4 z^{2}}{48 \sqrt{z}}\right) \frac{1}{\sqrt{n}}+O\left(\frac{1}{n}\right)\right) \\
C_{1}=\frac{3-12 a^{2}+24(1-a) * z+4 z^{2}}{48 \sqrt{z}}
\end{gathered}
$$

In our special case is $z=1, a=0$ and therefore

$$
C_{1}=\frac{31}{48}
$$

For more details see [6], p. 3.

Recurrence for A 002720 is

$$
a_{n}=2 n a_{n-1}-(n-1)^{2} a_{n-2}
$$

Program Asymptotics.m by Manuel Kauers generated asymptotic expansion from the recurrence.

$$
\begin{aligned}
\operatorname{In}[3]:= & \text { Asymptotics }[(-1+n) \wedge 2 a[-2+n]-2 n a[-1+n]+a[n], a[n], \text { Order } \rightarrow 2] \\
\text { Out[}[3]= & \left\{e^{-2 \sqrt{n}-n}\left(1+\frac{9164693}{637009920 n^{2}}+\frac{222853}{3317760 n^{3 / 2}}+\frac{553}{4608 n}-\frac{31}{48 \sqrt{n}}\right) n^{\frac{1}{4}+n},\right. \\
& \left.e^{2 \sqrt{n}-n}\left(1+\frac{9164693}{637009920 n^{2}}-\frac{222853}{3317760 n^{3 / 2}}+\frac{553}{4608 n}+\frac{31}{48 \sqrt{n}}\right) n^{\frac{1}{4}+n}\right\}
\end{aligned}
$$

Term C_{1} is right! We must only select the dominant particular solution (in this case is dominant a second expression).

Remark: This program don't compute the multiplicative constant.

But this is still not all. I tried Maple package Algolib yet, with excellent function equivalent by Bruno Salvy. With help of Maple module gfun we can find differential equation for generating function from recurrence using rectodiffeq and then use dsolve. Recurrence relation is necessary transform for exponential generating function.

$$
b_{n}=\frac{a_{n}}{n!}
$$

New recurrence is

$$
(n-1) b_{n-2}-2 n b_{n-1}+n b_{n}=0
$$

$$
\begin{aligned}
& >\text { \# A002720 for Egf } \\
& \begin{array}{l}
\text { with }(g f u n): \text { eg }:=\text { rectodiffeq }(\{(n-1) b(n-2)-2 n b(n-1) \\
\quad \\
\quad+n b(n), b(1)=2, b(2)=7 / 2\}, b(n), f(x)) ; \\
\quad \text { simplify }(\text { dsolve }(\text { eg })) ;
\end{array} \\
& \qquad \begin{array}{l}
\text { eg }:=\left\{(x-2) f(x)+\left(x^{2}-2 x+1\right)\left(\frac{\mathrm{d}}{\mathrm{~d} x} f(x)\right), f(0)=1\right\} \\
f(x)=-\frac{\mathrm{e}^{-\frac{x}{x-1}}}{x-1}
\end{array}
\end{aligned}
$$

This is right, exponential generating function is

$$
\frac{1}{1-\mathrm{x}} * e^{\frac{\mathrm{x}}{1-\mathrm{x}}}=\sum_{n=0}^{\infty} b_{n} x^{n}=\sum_{n=0}^{\infty} \frac{a_{n} x^{n}}{n!}
$$

Result from function equivalent we must multiple by n ! (factorial). We obtain

$$
\begin{aligned}
& >\text { simplify }\left(\text { asympt }\left(n!\cdot \text { equivalent }\left(-\frac{\mathrm{e}^{-\frac{x}{x-1}}}{x-1}, x, n, 5\right), n, 5\right)\right) \text { assuming } n>0 ; \\
& \quad \frac{1}{12}\left(6 \sqrt{2} \mathrm{e}^{-\frac{1}{2}} \sqrt{n}+5 \sqrt{2} \mathrm{e}^{-\frac{1}{2}}+12 \mathrm{O}\left(\frac{1}{n^{3 / 4}}\right) n^{1 / 4}\right) \mathrm{e}^{2 \sqrt{n}-n} n^{-\frac{1}{4}+n}
\end{aligned}
$$

Main term is right (and multiplicative constant is in closed form!), but second term is wrong, C_{1} is not $5 / 6$, but must be $31 / 48$.

Note, that without success is in this case also excellent Maple package AsyRec by Doron Zeilberger. Problem is probably in Birkhoff -Trjitzinsky method for A002720.

$$
\left.>\operatorname{AsyC(N^{\wedge }2-2*(n+2)} * N+\underset{F A I L}{(n+1)} *(n+1), n, N, 5,[2,7], 1000\right) ;
$$

Finally one more remark. Another approximation of A002720 with Bessel function exists. But important is that this is not identity.

$$
a_{n} \sim e^{-\frac{1}{2}} * \operatorname{BesselI}(0,2 \sqrt{n}) * n!
$$

Now we find C_{1} with same system as in case of LaguerreL.

```
Limit[
    (E^(-1/2) * BesselI[0, 2 * Sqrt[n]] *
                n!/(n^(n+1/4)/Sqrt[2]/E^(n-2*Sqrt[n] +1/2))-1)*
    Sqrt[n], n -> Infinity]
\frac{1}{16}
```

But this is not bug!
Numerically

```
N [
    Table[
        (E^(-1/2) * Bessell[0, 2 * Sqrt[n]] *
            n!/(n^(n+1/4)/Sqrt[2]/E^(n-2*Sqrt[n] + 1/2))-1)*
    Sqrt[n], {n, 1000 000, 10000 000, 1000000}], 20]
{0.062600925833894760366, 0.062571362362516080757,
    0.062558266047802008104, 0.062550459321562185933,
    0.062545131849898605468, 0.062541199325100346203,
    0.062538142998758594487, 0.062535679384222403356,
    0.062533638749176651031, 0.062531912441772792883}
```

But $1 / 16=0.0625$ and this result is right !

Asymptotic is not fully identical with A002720, only main term is identical.

$$
\begin{aligned}
& a_{n}=n!* \operatorname{LaguerreL}(n,-1) \sim \frac{n^{n+\frac{1}{4}}}{\sqrt{2} e^{n-2 \sqrt{n}+\frac{1}{2}}} *\left(1+\frac{31}{48 \sqrt{n}}+\cdots\right) \\
& e^{-\frac{1}{2}} * \operatorname{BesselI}(0,2 \sqrt{n}) * n!\sim \frac{n^{n+\frac{1}{4}}}{\sqrt{2} e^{n-2 \sqrt{n}+\frac{1}{2}}} *\left(1+\frac{1}{16 \sqrt{n}}+\cdots\right)
\end{aligned}
$$

asymp $=n^{\wedge}(n+1 / 4) /$ Sqrt $[2] / \mathrm{E}^{\wedge}(\mathrm{n}-2 \star \operatorname{Sqrt}[\mathrm{n}]+1 / 2)$;
Show [ListPlot [Table [(n! : LaguerreL[n, 1] / asymp -1) *Sqrt [n], $[n, 1,1000\}]$ PlotRange $\rightarrow\{0,1\}]$,
ListPlot [Tablel ($\mathbb{B}^{\wedge} \wedge(-1 / 2) *$ Besseli[$[0,2 *$ Sqrt [n]] $* n!/$ asymp -1$) *$ Sqrt [n] , PlotRange $\rightarrow\{0,1\}$, PlotStyle \rightarrow Green $]$]

References:

[1] OEIS - The On-Line Encyclopedia of Integer Sequences
[2] V. Kotěšovec, Non-attacking chess pieces, 5th edition, 9.1.2012, p. 212
[3] Oskar Perron, Über das Verhalten einer ausgearteten hypergeometrischen Reihe bei unbegrenztem Wachstum eines Parameters, Journal für die reine und angewandte Mathematik (1921), vol.151, p. 63-78
[4] W. Van Assche, Weighted zero distribution for polynomials orthogonal on an infinite interval, SIAM J. Math. Anal., 16 (1985), 1317-1334
[5] W. Van Assche, Erratum to "Weighted zero distribution for polynomials orthogonal on an infinite interval", SIAM J. Math. Anal., 32 (2001), 1169-1170.
[6] D. Borwein, Jonathan M. Borwein, Richard E. Crandall, Effective Laguerre asymptotics, 2008
[7] P. Flajolet a R. Sedgewick, Analytic combinatorics, p. 538-539
[8] Saber Elaydi, An Introduction to Difference Equations, 2005, p. 380-381

