Superqueers

E 3162 [1986, 566]. Proposed by Paul Monsky, Brandeis Unicersity.

A superqueen is a piece that moves on a square board like an ordinary chess queen but is permitted to continue along the extended diagonals (one may think of the board as a torus with opposite sides next to each other.) A resalt of Poblya's that has been rediscovered by others from time to time (see, for example, E 2968 [1979. 309]) is that N soperqueens may be placed on an N by N board with no two attacking one another if and only if N is prime to 6 .
(a) Is it possible, for each value of N, to place $N-2$ superqueens on an N by N board with no two attacking one another?
(b) For what values of N can $N-1$ superqueens be so positioned on an N by N board?

Safution by the praporer. (a) Such placements are always possible; for ench valae of N we describe one explicitly. If the ith superquecen is in column x_{1}, and row y_{3} we shall write q, for the vector $\left(x_{i}, y_{i}\right)$ viewed as an element of $Z / N \times Z / N$. It suffices to specify the $q_{i+1}-q_{1}$ for $1 \times i \times N-3$. The "generic" $q_{1+1}-q_{1}$ will be (1,2) for N odd and (1,3) for N evers; however, there will be a few exceptional values of i for which $g_{1+1}-g_{i}$ takes another value. For conciseness, we denote the vectors $(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5)$, and $(2,1)$ by A, B, C, D, E, F, G, H and I, respectively. A notation such as $A B B C$ (or more briefly $A B^{2} C$) will mean a placement of five superqueens with $q_{i+1}=q_{i}=A, B, B, C$ for $i=1,2,3,4$, respectively.

If N is not a multiple of 3 or 4 , the sofution is easy to describe and in fact more than $N-2$ superquecas are possible (cases 1 and 2 below). The placement of the $N-2$ superqueens is far more elaborate in the remaining caser. The constructions are as follows.
(1) If N is prime to 6 , then A^{*-1} places N pairwise nox-attacking superqueens,
(2) If $N= \pm 2 \bmod 12$, let $N=2 M$ with $M>1$. Then $B^{M-1} E B^{M-2}$ plsces $N-1$ pairwise non-attacking saperqueens.
(3) If $N= \pm 3 \bmod 12$, let $N=6 M+3$ with $M>0$. Then $A^{1 / 4-1} B A^{2 N} F A^{M-1} F A^{2 M-1}$ suffices.
(4) If $N=12 M+4$, then A suffices for $M=0$ and $B^{2 M-1} D B^{3 /-1} G B^{2} C B^{M-1} D B^{3 M}$ suffices for $M>0$.
(5) If $N=12 M+6$, then $B A B$ suffices for $M=0$ and $B^{2 S-1} C B^{4 M+1} A F B^{2 N-1} H B^{4 W}$ suffices fot $M>0$.
(6) If $N=12 M+8$, then $B^{2 \omega} G B^{3 M} D B^{N} A B^{3 N} G B^{3 N+1}$ suffices.
(7) If $N=12 M$, then $A^{3} B I B A^{3}$ suffices for $M=1$ and $B^{3 \mu-2} E B^{M-2} H B^{2 \mu-1} A B^{3 M-1} F B^{M-1} C B^{2,4-1}$ suffices for $M>1$.

Setting $z_{i}=x_{i}+y_{j}$ and $t_{i}=x_{i}-y_{j}$ it is straightforward but tedious to show that in each placement above the $x_{\mathrm{i}}, y_{i}, z_{i}, t_{i}$ each represent distinct residue classes $\bmod N$. Thus no pair of placed superqueens attack each otber.
(b) Placing $N-1$ superqueens is pessiblie if and only if N is not divisible by 3 or 4. (1) and (2) of part (a) show the condition is sufficient. To prove necessity,
spppose $N-1$ pairwise aonattacking superqueras have been placed. By translation, we mayy assume that ruw N and column N are empty.

Suppose the i th superqueen is in row x_{i} and columan y_{i}, and set $z_{i}-x_{i}+y_{i}$ and $f_{1}-x_{j}-y_{i}$. Viewing the summations in terms of x_{i} and y_{i}, we have $\sum z_{i}=N(N-1)$, $\Sigma t_{1}=0$, and $\Sigma\left(z_{i}^{2}+t_{j}^{2}\right)-2 N(N-1)(2 N-1) / 3$. Sibec the superquecas are nonattacking, $\left\{i_{i}\right\}$ and $\left\{i_{i}\right\}$ each occupy $N-1$ congruence claxses mod N; let u, v with $0<u, v<N$ be the omitted class for $\left\{L_{i}\right\},\left\{f_{i}\right\}$, respectively. Then $u+\Sigma v,=$ $u+\Sigma t_{\mathrm{r}}=\sum_{j=0}^{N-1 j}=N(N-1) / 2 \bmod N$. Therefore, $\pi=v=N(N-1) / 2 \bmod N$. This implies $u=v=0$ for odd N and $u=v-N / 2$ for even N.

When N is odd, we conclude that the z_{i} 's belong to distinct nonzero congruence classes $\bmod N ;$ similarly for $\left\{t_{i}\right\}$. Thas $\Sigma z_{i}^{2}=\Sigma i_{i}^{2}=\Sigma j^{2} \bmod N$, so $\Sigma\left(z_{i}^{2}+i_{i}^{2}\right)=$ $N(N-1)(2 N-1) / 3 \bmod N$. Siace the sum equals $2 N(N-1)(2 N-1) / 3$, we conclude that $(N-1)(2 N-1) / 3$ must be an integer, which implies that N is not divisible by 3 (or 4 , being cdd).

When N is even, let $z_{0}=t_{0}=N / 2$. Then the z_{i} 's belong to distinct congruence classes $\bmod N$, and similarly for the $J_{i}{ }^{\prime}$. Since N is even, $z_{i}=j$ mod N implies $\Sigma_{1}^{2}=f^{2} \bmod 2 N$. Summing. we find modulo $2 N$ that $\Sigma s_{1}^{2}=\Sigma j_{i}^{2}=\Sigma j^{2} \sim$ $N(N-1)(2 N-1) / 6$. Deleting the terms for $z_{0}-t_{0}=N / 2$, we have $\Sigma_{j=1}^{N-3}\left(t_{i}^{2}+r_{i}^{2}\right)=N(N-1)(2 N-1) / 3-N^{2} / 2 \bmod 2 N$. Again the sem equals $2 N(N-1)(2 N-1) / 3$, and we conclude that $N^{2} / 3-N / 4+1 / 6$ is an integer. Again this implies that N cannot be a multiple of 3 or 4 .

No other solations were received.

