The n-Queens Problem

Igor Rivin, llan Vardi, and Paul Zimmermann

1. INTRODUCTION. The rucens problem asks how many ways can one put n

queens on an n X n chessboard so that 1o two queens attack each other. In other
Words, how many poits can be placcd on an n X n 84 50 hat 10 0 e on the
same row, column, or diagonal (see Figure 1).

Figure 1. Chess Queen.

‘This question was first posed for the ordinary 8 8 chessboard as an anony-
mous problem 3 aer atcbuted 0 Max Bezzel [1,p. 211). The problem reccived
wide sttention, however, when posed by Franz Nauck in 1850 (2], Writing sbout
the problem i & letier 10 the astronomer Schumacher, Gauss conjectured

ns (9], ther tis 92 sltions were puhod e
use that he had been incorrect 2 solutions are commonly
ted by 12 “fundamental” solutions, thal is, ltiom it re. o reee.
tions and rotations of each other (sce Figure 2). That 92 was the right answer,
however, was not proved formally until 1§74 by Dr. Glaisher (10), (27], using an
idea of Giinther (sce Section ). For a history of early results see [1] and the
bibliography of (28].
iays the 8-queens problem is most often encountered as an exercise in
introductory artificial intelligence programming courses. In fact, the n-queens
problem is one of the benchmarks by which backtracking algorithms have been
compared (32], (12), (11}

For the general n X n case denote by Q(n) the number of solutions. It s not
immdinely abwious whetner Qm > 0 for general A and there have been &
‘number of independent proofs showing that Q(2) = Q(3) = 0, Q(n) > 0,n > 3.
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Figure 2. Fundamental slutonsto & x & problem,

“The first proof seems to be by Ahrens [1], but proofs by authors unaware of this
reference appear in [34], [14], 6]. Other proofs can be found in [28], [8], [23). It is
interesting that none of these notes that Q(1) = 1(35].

‘The precise nature of Q(n) seems very difficult to understand and a more
tractable problem appears 10 be the (oroidal n-queens problem: How many ways
can one place n-qucens on an 5 X n chessboard 5o that no two queens can be on
the same row, column, or cxtended diagonal (see Figure 3). This problem was first
studied by Polya (1, p. 363-374] who showed that 7(x) > 0 if and only if
(1,6) = 1, where T(n) denotes the number of n X  toroidal queens solutions
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Figare 3. Toroidal Queen.

Finding closed expressions for Q(n) and () seems to be an intractable
problem, s0 our results deal instead with estimating the asymptotic order of these:
quantities.

First, note that every queen solution i also a rook solution, ic., no two.
can be on the same column or row, and that each rook solution corresponds to a
distinct permutation of (1,...., n) and there are n! such permutations. It follows

It appears that the only previous non-trivial lower bound is the one of Lucas [17]
stating that 7(p) > p(p — 3)if p is prime. In this paper we will show

‘Theorem 1.

(@) Let pbe a prime such that (p ~ 1/2 is not prime, then T(p) > 24/,
where d b he sl nonrial i o (p ~ 1)/2 lnpnmatla' o ip=
(mod4), then T(p) > 204, but in' general one the bound.
T(p) > 2072

(b) If n is divsible by a prime = 1 (mod 4) then T(n) > 2°/°.

o that the above st als hod for Q) since () = 7 while (1) bolds
lmost all n, since the set of integers not divisible by a prime =

density s 131,

‘We have not been able to find super exponential bounds for Q() and T(n) but we.

believe

Conjecture 1.
k »

i BT g, SO g
o ren A ogn
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Finaly, T(a) can als be thought o a5 the mumber of arrays of ron neuuve
integers with row, colum, and broken diagonals summiny
Tl masic sauare 127] with common sum aua 1o one. Following déas o m] we

Conjecture 2. The generating function .. (T(n)/n!)x" has a closed form.

2. SURVEY OF PREVIOUS RESULTS. First, write a queens solution as a function
JU, K =0,....,n ~ 1,50 that the k'th queen is placed at the (k, (k) coordinate
of the chemioud. I nllays inmediaelythat / sepreses o kel wkoron X
and only if k ~ f(k), k = f(k) + k (mod n), and k — f(k) — k (mod n) are all
one to

vy, 40 epresents & (ot necesarily toroida gueens solion f and
k= (), k= fOk) + k, and k= f(k) ~

We now prescat an clegant proo 15 2, that here st e solton
for n > 3. The proof splits up according to the residue class of n (mod ).

@ I n = 6m + Lot n = 6m + 5 then (s, 6) = 1 and one lets f(k) be given by
fUk) = 2k (mod n). This is clearly a toroidal solution (thus an ordinary
Solution). Note that this is what one would ordinarily consider as putting
queens one “knight's move” apar.

() If n'=6m or n=6m +4 then one takes the solution of (a) for the
(n+ 1) X (a + 1) board and removes the queen in the (0,0) position (ic.,
the leftmost column and bottom row). The resulting position is an

only

@ltn=m
A ik where

3 first construct a 6m + 2 solution as follows:

T - {Zk i S L

n-1-k), ifn/2sksn-1

Oue checy culy tht thls Iy £ o, Note tht ths s 4 salgitoowend
generalization of solution (10) in Figure 2 for the 8
Since this solution does not have a queen on the main dl!sun-l onc can construct
& m 43 soluion by adding s rov and column (o the cdge of the boud and
putting a queen on the new comer.
‘Tuming to T(n), we prove Pélya's result charact
“This i ais0 proved n (5 19 21 An extension i iv
Let (1,6) - 1 then, s befor, (k) — 2k (mod ) is 4 ool souton, s0
T(n) > 0. Conversely, one shows that 7(n) > 0 implies that  is not divisible by 2
or3.
Assis that JO£) opresea an 1 n torodal seon 80 1) = k (mod )
a permutation of and

ng » for which >0

(n - 1)

" PR
L (f(ky-k)= Lk~ (mod ).
=1 o

s sum is also

Tt -ty =T 10 - T,
L ez

632 THI -QUEENS PROBLIM [August-September



since f(k) s a permutation of 0,
follows that  is

n = 1. Therefore n

ides n(n - 1)/2and it

that n isible by 3 by using the sm

“i'(f(k) -~k "E(rm mtfi'u- 0 (modn

The next result, also due to PSlya [1}, shows how to compose sol

11 sluton nd an % soution are gven the one s 1o comsct
ot soltion vy plcing 3 copy of the m x m solution where eaeh Qucen
appears in the n X n solution (see Figure 4).

Figure 4. Composed slution.

Let m,n >3, where (n,6) = 1. Then if g is a toroidal n X  solution and f is an
ordinary m X m solution, then one can compose these 10 an mn X mn solution

Proof: Every integer mod mn can be written uniquely as an + b,a
D e i b that K +-5) = flam = 85 s an s X
elution. For exampl, cheeking te condiden that Hk) K ' on 10 0
‘The assumption
[0} h(an +b) +an + b= h(dn +¥) +an+ b
is seen to imply g(b) + b = g(¥") + b’ (mod n), which gives b= b’ sincc g is a
% n toroidal solution. Equation (1) then gives that
f(a)n +an =f(@)n +dn,
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50 a = d since f is a queens solution. The other cases are exactly similar, giving
the result.

‘We now tum to the Lucas estimate T(p) > p(p — 3) which is proved by noting.
that for p a prime, cach pair a # 0, & 1(mod p) and b = 0,...., p ~ 1, generates
the distinet toroidal solution (k) = ak + b, and the number of such solutions is
2p =3

‘We end this section by mentioning results that are tangentially related to the
n-queens problem.

) Upper bounds for 7(x) might be obtzined d b replacing the toroidal queen
vith a foroidal semiqueen, a picce that moves like a toroidal queen but cannot
travel on negative diagonals. The toroidal semiqueen problem can be expressed
very simply in terms n( ‘permanents and this question was studied by . Rivin and
1 Vardi in [33, Chapter 6].

D A simpler qn:slm than the ucens problem is (o compute how mary
n attacking queens on an n X n chessboard.
mber Q) For & = 5.3 here re dooed forms 1, 38,

n(n = 1)(n = 2)(n — 1
iy = BT D= DG D)

(n = 1)(n = 3)(2n* — 120° + 250 = 14n + 1)
i) .

Qs(n) =
In general, one can show [31, Problem 4.15] that for fixed k the gencrating
function

Eomx

is @ rational fun
D The ideas i Polya's paper have b used to give anotherproofof Fermat's
result that every prime = 1(mod 4) is a sum of two squares [16].

. COMPOSING NEW SOLUTIONS. Examining 2 typical composition con-
siructed by Theore 3 e pots tha thereare arpe ares ofthe boand tha have
no queens Gsee Figure
We et e regions can be used cffectively to construct many more
solutions with only a slight variant of the basic composition idea.

me,w:tx,m (08 =1 ad ket [, f fom b ol

ghea ' solution. Then for ‘map
w0, — l u - »Q(m)) the function h(an+b! Fupfan + £(b) gives
n

Proof: The proof that each of these gives a queens solution is exactly as in the.
previous section, while the fact that each solution is distinct is clear from the
definition. o

Corallary 1. Let (1,0 = 1 2.3 then Qmn) > [T, In i, i N

s o raamber divsble by 5, and (N,6) = 1, then Q(N) >

Proof: The first part follows directly from counting the number of solutions
rated by Theorem 2. Th second resut follows by eting = 5:m = N/5,

and noting that O(5) = 4. One then checks the special cases N = 10,15
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mark. Corollary 1 gives the first example of a set of n's for which Q(n) grows
Tener tiam polvlmmlll inn.

4 USING THE MULTIPLICKTIVE STRUCTURE. OF 2/pZ. In the previous

structed mn X mn solutions out of m X m solutions and n X 1
tions. Such method Wil ot work fo the case o . chessboncds when p
is prime, an tial number of solutions in

new idea.

The basic idea of composition was to generate solutions using an additive
wbgrvuv of Z/nZ. We will now use the multiplicative structure by constructing
incar” solutions of the form /(k) = c,k, where c, is constant on cosets of
icative subgroup of (Z/pZ
‘The simplest case is when p = l(mod 4). It is well known [13, page !5] Ihnl for
such p there is a number i mod the lvpcnyllnu -—l(mod

Consider an equivalence relation on {1,...,p — ~bif b, for
some & This defnes  ~ 174 cquivalence s (o> (a2t 1) o
some s aumbers0 Sy <.

Now consider f(k) = ¢, k, where ¢, = 1/i, and c, is constant on each
set (k). The claim is that f(k)isa mmdzl queens solution.

Theorem 3 (). Each map o {1,2,....,(p — 1/4) > (1} yields a distinct toroidal
P X p solution.

Proof: For each o identify (1,...,(p l]/‘) with the distinct classes
(). gy y,0) and define f by f(k
Tn see that f is a toroidal solution we check lhe three conditions of Section 2:

(@) Assume that f(k) = f(K'), then
TN ED w2 s (K) = (K =k = K

0 one.
(b) Assume that (k) + k = f(K') + K’ then iVk + k = iK' + K so0
k(i) =R (1 +iT)
for one of four choices of &1, F 1. All these cases lead to (k) = (K'), for
exzmvlz‘ KL 10~ K+ D then the ideniy 1+1/i= (0 40
ives k = ik'. It follows that (k) = (K') 50 k = K'.
@I g0 k- = 7(k") = ¥, then onc gets that o as in part (b). The only
difference is that i2 = —1(mod p) is needed to
K(1/i = D and k(1/i = D= KG = 1.
Finally, it is routine to check that for each distinct o one gets a distinct f. O

In the general case let g be the smallest divisor of p - 1 that is even and
sreater than two. It is known [13] that x¢ = 1 has g solutions mod p and that
these form 2 cyclic group. Let £ be @ generator and, as before, define an
cquivalence rlation by a ~ b if a = £ for some k. This gives (p — 1)/a
equivalence classes (@), (ag,sy/q), Where (a) represeats e cauialenee
class of a (ie., {a, éa, €%, ... £7"a}). The result is

Theorem 3 (). Eachmap o {1,....,(p ~ 1)/a} = (1) leads to a distinct toroidal
p X p solution.
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Proof: The proof proceeds exactly s in part () of the theorem. It is important to
o that a5 1 pat (0 above,one nees (0 have ¢ = 1 forsom. . i ol
why g must be chosen to be an even divisor of p — 1.

Theorem 1(a) now follows immediately by counting the mumber of solutions
generated by Theorem 3

Remark 1. We have found no improvement on the lower bound p(p — 3) for
primes of the form p = 2q + 1,q prime (Cunningham primés).

Remark 2. For a given g dividing p — 1, the solutions constructed by this method
have the same cycle structure when taken as permutations, ic., a p
(p = 1)/q cycles of length g.

Remark 3. This method of constructing solutions can be used o give more
complica solutions. o o
primes p,,p, = 1(mod ) (the general case is

imilar).

Theorem 4. For each e s(py = D/4) = (1, Tpp) and 7
00.p = 1= (1,0 z" "/‘h;muaduwrp,p,xp,p, mmldal:otul

Lt f,
be the sol
(mod p,py) uniquely as ap, + bp, Where a =0,..., p;
can then be shown that for each o, 7 the function

h(apy +bpa) = £V (a)p; + gD P2

gives a distinct toroidal solution.
‘Counting the number of solutions gencrated by Theorem 4, one gets that

Torpa) = TC oo/ i2sson-s.

‘This can be extended to more complicated compositions for products of more than

+Fitpy e the toroidal p, X p, solutions and g,....., £, -1ye
s a5 constructed in Theorem 6 (). One can write cach number
=0

o pres, A computation shows that i the limit this gives the low
T > 2004 where ¢ » 0 a0 she mumber of prime fociors o it e = 1
(mod 4) goes to infnity.

/e now turn to the proof of Theorem 1 (b). Consider n, (1,6) = 1, and n is
divisible by a prime p = 1 (mod 4). It follows from Corollary 1 and p > S that

T(n) = T((n/p)p) > T(p)""T(n/p) > 270~V/4» 2 2175, o

Remark. The reader may have noted that ou echniques have been clementary. 16
is an interesting question why lower bounds have Ssaped th lage
literature on this subject. We belive hat there are wo rcasons for o

‘The first comes for the original formulation of the problem on e x5
chessboard. Note that in in the proof of Theorem 1 che hardest case was for
numbers = 2 (mod6), since they cannot be reached from the more tractable
{oroidal roblem. This migh alsy cxplin why he torodal poblem has ot been
extensively investigated.
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second reason is the emphasis on clasifying “fundamental” solutions,
solutions that are not rotations or reflections of each other. This problem is
difficult even in the much simpler case of the rook's problem, and counting the
number of fundamental solutions has proved 1o be nontrival (18], 4], 21}, 26].
Note that fundamental solutions under toroidal symmetries for the toroidal case
are very casy to classify—they ar the ones with a queen at

5. COMPUTATIONAL RESULTS. As mentioned in the introduction there has
been much interest in the computation of Q(n) and T(n) using backlruh'l!
algorithms. A different algorithm has been advanced by Igor Rit amin
Zabih [24). Their idea is similar to a method proposed by Gumher Cm\sxder
independent variables Xo,... Xpy ¥y 10+ Y, and the matrix |X,.,Y,_jl,
then the squarefree term in X, Y of the permanent of this matrix (delemunnm
‘with no minus signs) gives the number of queens solutions. As before the toroidal
case is much cleaner. One has 2n variables and considers the squarefree term of
the permanct of X, uuq Y- ool

“To estimate the running time 0[ 1hn method in Ihn lulvmlxl r,ue‘ note that the
standard methods for evaluat permanent give e of about 2"
multiplications, and the terms are squarefree polyxmmuh in Zn variables and of
degree < 2n. It follows that there are at most 22" terms. Since a multiplication
takes time about 8", this gives a nnmin. time on the mdel of 16", but with space

).

2

requirement of 4" (the running time can be reduced
Sico backiracking siorihne Senerate il soations these take at least T(r)
steps to compute T(n). It follows that a lower bound T(n) > y", whee y > 8,

o thow tat the Riin Zabin llgumhm always runs faster than backtracking Gt
Conjecture 1 holds, then thi ‘much faster than backiracking).

On the ckher hand, backiracin e very little space so it s still the more

practcn metiod for compuaing Larg vacs of T(r) and 00, and alth il

igure 20) were computed by

A Shapira (29D, was computed using
backtracking and a number of implementation shortcuts. Toroidal symme

" 103 o8 T/ log m) om 108 0/ (nog )
T 7 o1
5 0 o026 0 0286
s 4 o1
7 ) ous w© ont
8 o0an
5 et 0297
0 o

u a8 o 2680 o

2 1000 0321
I o 020 73712 033
1 365596 0347
15 0360
16 wmsi2 03
I 140692 o216 9815104 03
1 66090624 0391
1 20096 02 e o039
» 39029188884 0407
3 ssons 0259

Figare . Values of 7(n), Q).
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reducod the number o be computed o 148225 soluions. A furthe sving was o
inate impossible consccutive triplets. The computation was done in LeLisp as
v & petwork of 20 Sus at INKIA, Rocauencour,
and 100k 267 days of CPU tim
Note that the m-n..mrml evndenm supports Conjcture | sge the valuesof
increasing.
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INRIA Lorriane

The Prince of Algebra

Madam Professor
Let me ntroduce. ‘myself—
I'm Albert James,

that's lower than my age.
Your algebra tests

are (00 long for me

in fifty minutes,

but I am proud

of my attendance—

1 never miss class,
never come late.

1 .am preparing

for a new career.

For thirty ycars [ was
with the Postal Service
never absent,

never late.

Your mathematics

‘which uns mc mail.

Now I train to be

afirst mdc escher

Twill teach

mathemat

by punctuality

and perfect attendance,

From Intersections: Poems by JoAnne Growney,
Kadet Press, Bloomsburg, PA, 1993, p. 52-53.
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